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ABSTRACT

In partnership with Ford/Visteon, Sandia National Laboratories began work on design
and implementation of improved end-to-end control for float glass production, under
DOE Office of Industrial Technology sponsorship.  The first task undertaken was to
provide an intelligent control for the annealing lehr, both for optimum usage of sensors
and for the ability to report digitally the state of the lehr to an end-to-end control system.
The heat transfer simulation of the lehr enclosure for that purpose is described here. This
includes a closed-form solution for the infinitely wide glass ribbon, which allow robust
computations of the thermal profile and inverses of this function for controls use.  This
also allows useful initial temperature estimates for the case with counterflow in the lehr
ducts, which should greatly simplify and speed the convergence of more detailed models
in which the glass participates in the radiative exchanges.  This is supplemented by
software to compute radiative viewfactors of lehr elements for use in finite-width
versions of the simulation.  A brief discussion of how stresses could be computed from
such a thermal solution is given, but not implemented in software.
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LEHR MODEL REQUIREMENTS

The annealing lehr is basically a large insulated enclosure through which a ribbon of flat
glass passes at controlled speed (see Schematic).  The enclosure contains air ducts
through which air flows with controlled initial temperature and flowrate from a plenum.
The goal of this arrangement is to subject the ribbon to a suitable temperature history so
that the exiting ribbon has a desirable residual stress distribution when it reaches room
temperature.
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A glass ribbon carried on supporting rollers enters the lehr in a fluid state
at a temperature around 1050 deg F and exits below the glass transition
temperature. The complete lehr consists of three sections—conditioner,
annealing section, and cooldown section, all enclosed in an insulated box.
The first two sections are  cooled primarily by radiative exchange  with
cooling air in the ducts above  and below the ribbon.  Airflow in the ducts
can be parallel or counter to the  ribbon motion which defines the positive x-
direction here.  Electrical heaters may also be installed between the bottom
of the ducts and the ribbon to improve control.

To achieve the goal, it is necessary to select flowrates in the individual ducts as well as
inflow temperatures, so that the desired temperature distribution is imposed.  To do this,
we can either specify an array of sensors adequate to the characterization of the
temperature distribution, or we can attempt to simulate the glass temperature in real time
so that a few robust sensors can provide sufficient information for successful control.  We
have chosen the second approach.
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Taking the Chui model [1] as our starting point, we seek a real time simulation which can
track the dynamics of the lehr thermal solution faithfully enough for control development
and potentially as an element of a model-based control.  The goals are double—to bring
the lehr under better control, and to provide a digital set of state variables for the lehr
which can be communicated throughout an end-to-end control system for float glass
production. The physics incorporated in [1] consists of balancing energy between the
glass ribbon and the  fluid in an array of ducts which are symmetric about the ribbon’s
midplane, with radiation flux connecting them.

To begin the discussion, a closed-form solution for a single duct exchanging
radiation with a ribbon, both infinitely wide, so there are no viewfactors to consider,
(simplified version of the Chui model) is derived, exhaustively analyzed and written into
FORTRAN software. Then radiative viewfactors of realistic lehr geometries are
generated in the second section, so that the full Chui model can be assembled from very
high speed software. This section also includes software to characterize roller radiative
exchanges, and discusses the thermal contact between glass ribbon and the supporting
rollers as well.  Treatment of heaters and coolers which allow more realistic spectral
characterization of the glass-heater exchange is also provided in Section 2. In a report to
follow,  that case will be extended to include radiative participation of the glass ribbon ,
see Ref. [3 ].

The approach for estimating stresses is outlined in the fourth section, and a discussion
follows in the fifth.

1. PLANE PARALLEL SOLUTION

Consider the case of an infinitely wide glass ribbon moving through an infinitely
long and infinitely wide set of ducts in which a fluid flows.  Let the ducts be symmetric
about the midplane of the ribbon,  and suppose that the heat exchange is entirely by
radiation between the ribbon surface and the ducts’ surfaces.  For steady operation of this
system, the surface temperature of the glass will be ( )xTg , depending only on the
position along the direction of motion, and, if the ducts’ fluid and surface  temperatures
are taken to be the same, these will similarly be functions of x alone: ( )xTd .  If the  flux
between the duct and ribbon is entirely radiative, the energy balance for bulk
temperatures can be written in terms of the mass flux per unit width  times the specific
heat gg Cm�  , that is, the heat capacity of half the ribbon, simply as:

gg Cm�
x

Tg

∂
∂

  =  - σε e ( )44
dg TT −                                                 [1a]

when the x axis is in the direction of motion of the ribbon, and the radiative flux is
determined entirely by the temperatures of the duct and ribbon at station x alone—the
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temperature gradient along ribbon and duct is ignored here.  The “effective emissivity”
eε  is given by:

eε  = 
1

111
−
�

�
�

�

�
−+

dg εε

for infinite plane-parallel gray isothermal surfaces. The fluid in the duct then obeys:

± dd Cm�
x

Td

∂
∂

  =   σε e ( )44
dg TT −                                         [1b]

where the + sign indicates fluid flowing in the same direction as the ribbon moves, while
the – sign indicates counterflow.  It follows immediately that

x

Td

∂
∂

  =   a  
x

Tg

∂
∂

,

where the parameter  a  is simply the ratio of  advected heat capacities (per unit width):

 a   =  � ( gg Cm�  )/ ( dd Cm� ).

This means that  ( )xTd  can be eliminated as a first integral; in dimensionless form:

dθ  = doθ  + a ( )1−θ                                                   [2a]

where dθ  = ( )xTd / goT   and θ  = ( )xTg / goT  are dimensionless values for the absolute
(e.g., K) temperatures, scaled by the initial glass ribbon temperature  goT  .  For
convenience, let this be written as bad += θθ   where   ab do −=θ  is a known constant
since a  and the initial duct temperature are prescribed .

An inherent length scale oL̂  can be defined from the data as:

oL̂  = ( gg Cm� )/ ( σε e
3

goT  )

Now, the energy balance  equation reduces to the ordinary differential equation

- oL̂
dx

dθ   =  ( )[ ]( )44 1−+− θθθ ado  =  ( )aP do ,;4 θθ

Closed-form quadrature can be carried out on this expression;  for three basic cases:
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(Case 1: general solution)  The result is the cumbersome but explicit form of the solution,
including its initial conditions:

( )
o

o

L

xx
ˆ
−

=    3

2

2
1

b

a+   ( )doaF θθ ,,                                                    [2b]

where

( )doaF θθ ,,  =  -  ln
2

1
1

1
�

�
�

�

+
+

−
−

d

do

do

d

θθ
θ

θ
θθ

 +  �
�
�

��

�
�
�

�
�

	


�

�

+
−

+
− −

ddo

ddo

a

a

θθθ
θθθ1

2

2

tan
1
1   +

                             +  21 a

a

+
   ln   

( )
( )22

21

d

do

θθ
θ

+
+

 
( )
( )2

22

1 do

d

θ
θθ

−
−

The right hand side depends only on the arguments of  ( )doaF θθ ,, ,  given the definition
of b.  That is, the lehr aim point, namely, the glass temperature at the exit,  has the
dimensionless value  θ , while the lehr control settings for (1) flow in the ducts, a , and
for (2) the temperature of the duct fluid , doθ , at the station  ox ,  are the other two
arguments.

For counterflow in the ducts, a  is positive; it is negative for parallel flow.  In the
counterflow case, the value of the dimensionless parameter doθ  is not usually known;
rather, the temperature of the fluid at the inflow end of the duct at station x is known.  If
we denote the inflow temperature of the duct fluid by  dinθ    regardless of whether it
occurs at station x or at station ox , then the function  ( )doaF θθ ,,   can be written as

( )dinaF θθ ,,     with the understanding that   dinθ   means  doθ      when a  is negative, and
means   dθ    when  a  is positive.

(Case 2: b=0 in counterflow)  Putting b = 0 makes the [2b] singular, but also makes the
duct absolute temperature  a multiple of the glass temperature, allowing another trivial
quadrature:

oxx −   = oL̂ ( )413
1

a−
  �
�
�

� −11
3θ

                                                 [2c]

Note that  a  cannot be unity in this case, or the duct and ribbon are at the same
temperature everywhere, since b  =0. Further, because ab do −=θ  = 0 here, the initial
duct temperature doθ is simply a .
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When b  is small, evaluation of [2b] is inaccurate, so it is necessary to expand the
solution in powers of b .  This is developed in App. 1, where  the most natural expansion
parameter turns out to be ( )41/ abe −=  rather than simply b .

(Case 3:  Minimum ribbon length: a    = 0)  This case represents infinite heat capacity of
the duct flow as compared to the ribbon.  The duct fluid remains isothermal at doθ  and
the quadrature gives:

( )
o

o

L

xx
ˆ
−

  =  32
1

doθ
( )( )
( )( )

( ) �
�

�

��

�
�

�

�
�

	


�

�

+
−

+�
�

	


�

�

+−
+− −

2
1

2
1

1
tan

1
1

ln
do

do

dod

dodo

θθ
θθ

θθθ
θθθ

                            [2d]

Since this also represents the shortest length for which the glass temperature can be
brought to the value θ , it is a useful reference value for calibrating the lehr performance.

The solution given by eqs.[2] above is of the form �  = ( )doaF θθ ,;ˆ  in terms of

the dimensionless distance  ( ) oo Lxx ˆ/−=�  as dependent variable, with independent
variable being θ , and the duct settings a   and  doθ    as parameters.  Since any value of
θ  can be used in the right hand sides of eqs.[2], the first step in evaluating the solution
must be to select the physically meaningful domain of  θ , for the given values of a   and

doθ .

By inspection of eq.[2b], it is clear that θ = dθ  and θ = - dθ  are both singular,
and produce an infinite value for � .  Substitution into eq.[2a] and solution result in two
values

cθ  = 
a

b

−1
                                                               [3a]

oθ  =  
a

b

+
−

1
                                                            [3b]

The first of these is the value cθ  at which the ribbon and duct temperature converge,
given infinite length to accomplish this asymptotic behavior, as seen in Fig. 1(a) for
parallel flow.  The second represents an asymptote approached by the glass while the
duct approaches  - oθ .  Since one temperature ratio or the other must be negative, this
infinite length branch must be nonphysical because these are absolute temperatures.
Thus, when the value oθ  is positive, the solution must have been cut off when dθ =0, at

�  = ext�    , an extremum of  � . This length corresponds to θ *= a
b− .   Similarly, for a
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negative oθ  value, the cutoff must be imposed where  θ = 0 (where dθ = b); in either
case, ext�  is given by:

ext�  = 3

2

2
1

b

a+   ( ) �
�

�

��

�
�

�

−
+

+
+

+
−+

+
− −

2

2

2
1

2

22
1

1
1

ln
1

tan
1
1

1
1

ln
do

dos
doo

do

do

a

a
s

a

a
o

θ
θ

θ
θ
θ

      [3c]

where os  is +1 when oθ  is positive, and is –1 when oθ   is negative, so that the argument
of the arctan is  doθ   and   –1/ doθ   respectively in these cases.  The physical solution
branch can now be fully characterized by analysis of the relative sizes of   cθ , oθ ,θ * in
relation to 0, 1, and doθ  values.

The usual information sought by solving the energy balance [1] is the variation of
temperature with distance from the inflow station  ox .  In terms of the variables
introduced above, this is the function  θ =  ( )doaf θ,;�  , with dimensionless distance  �
as the independent variable and the duct settings a   and  doθ    as parameters, which
describes the variation of temperature on ribbon and duct (using eq. [2a]).   This function

( )doaf θ,;�  is clearly the inverse of the function ( )doaF θθ ,;ˆ  defined by the solution [2].
Numerical evaluation, using bisection to locate the appropriate value  of   �   for the given
a   and  doθ , is done by a routine called ‘Tofx()’.  Example plots, using input parameters
derived from Chui’s work [1], are shown in Fig. 1 below, for both parallel and
counterflow in the ducts.

0 10 20 30 40 50 60 70 80 90

650

700

750

800

850

900

950

1000

1050

  Ribbon/Cooler Temperatures 

    Distance ( feet )  

   
 T

em
pe

ra
tu

re
 (

 d
eg

 F
 )

 

paper.plt

0 10 20 30 40 50 60 70 80 90

650

700

750

800

850

900

950

1000

1050

  Ribbon/Cooler Temperatures 

    Distance ( feet )  

   
 T

em
pe

ra
tu

re
 ( 

de
g 

F 
) 

paper.plt

 (a) (b)

Figure 1. (a, to left) Duct flow is parallel to the glass ribbon motion, and duct fluid is
cooling the glass.  Parameters ( a , doθ ) are taken from Ref.[1], Fig. 8(A), and oL̂  is
chosen to give the best fit of the closed form solution (continuous curves) to the solution
from Ref.[1] (plot symbols +).  (b, to right)  Counterflow solution for same parameters,
with no adjustments.  Fig. 8(B) of Ref.[1] is plotted for comparison (plot symbols +).
This plot requires the inverse function ( )doaf θ,;�   described below.
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The inverse function  ( )doaf θ,;�  can only be constructed when an exhaustive
classification of the possible solutions is available; see Fig. 2.  The physically meaningful
part of this plane is its first two quadrants, in which doθ > 0 holds.  This halfplane is then
subdivided by  the line doθ  = 1 which separates glass heating (H) solutions from glass
cooling (C) ones.  Counterflow solutions make up the first quadrant; parallel flows
constitute the second quadrant.

The  ( a , doθ ) plane further subdivides because the  parameter  ab do −=θ
introduced in eq.[2a] vanishes on the 45-degree line through the origin; b  is positive
above and to the left of this line. Near this line, the power series with leading  term
eq.[2c] is evaluated whenever ( a , doθ ) lies between the broken curves which converge at
(1,1); outside this region, eq.[2b] is evaluated directly to determine � .  At these dashed
curves, numerically evaluated  �  may be discontinuous because of this switch between
[2b] and [2c].
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Figure 2.  Subdomains of the  ( a , doθ ) plane with distinct solution types for plane
parallel infinite glass ribbons and duct surfaces.  Solutions in Figs. 1 (a) and (b)
correspond to the points A,B with the filled circle plot symbols.  All solutions with  doθ  >
1 have ducts heating the glass, and are  labelled “H”; those with  doθ  < 1 are glass
cooling, “C”.  In each subdomain, the order of the glass temperature values  θ  given as

oθ ,  cθ  are different and are in different orders relative to 0, 1 or doθ .  Asymptotic form
eq. [2c] is used between the dashed curves, which includes all weak duct flow cases
(large | a | ); values depicted are mine =-0.115 and maxe =0.086.  The infinite duct capacity
solution [2d] applies to all points along the vertical axis.
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In summary, the solutions given in eqs. [2] have physically meaningful values
when the glass temperature aim point  θ  is between unity and  cθ   for the regions

C1,C2, H1 and H2; for C3 and C4, θ   must lie between  θ *= a
b−   and unity, while

H3 and H4 can take on any θ  value from unity to infinity.

1.1 Software Modules.   To make the results derived above readily available to the user,
some basic subroutines have been written.  These are enumerated here.

1.1.1 XEND()  This function has arguments  θ , a  , and dinθ  and returns the overall
length oa�  as the value of ‘xend()’.  For the parallel flow case with a  < 0,

doθ = dinθ  and this is simply the function value of ( )doaF θθ ,;ˆ  discussed above.
However, for the counterflow case with dθ = dinθ , the value returned is oa� , the
dimensionless distance to the station x where the duct temperature is dinθ .  Either
the direct solution [2b] or the asymptotic solution [2c] is used in making this
evaluation.

1.1.2 XCOUNT()  This function has arguments θ , a  , and dinθ ; it returns the length
� at which the ribbon temperature ratio is θ , for the counterflow case.  Thus, for

counterflow, this gives as ‘xcount()’, the value of ( )doaF θθ ,;ˆ .  It is called by the
three routines ‘Tofx()’, ‘aLEHR()’ and ‘Tdin()’ described below.

1.1.3 Tofx() This function has arguments a  , dinθ , oa� , and � ; it returns the ribbon
temperature θ , found at dimensionless distance � .  It is the value of ( )doaf θ,;� ,
and is found by iterating on θ values until ‘xend()’ and ‘xcount()’ return values
as near to �  as the machine arithmetic allows.  The iteration scheme is bisection,
so that jumps in �  where the asymptotic and direct solutions join are tolerated.
This function was used to generate Fig.1.

1.1.4 aLEHR()  This function has arguments dinθ , oa� ,and θ aim point; it returns
values of the duct heat capacity ratio a  which will result in these values, with
‘aLEHR()’ being the parallel flow value (negative) and the argument ‘a2’ being
the counterflow (positive) value.  This is presumed to be useful for model-based
control, in that it selects how large an actuator move is required to change the
estimated steady solution to the desired one (θ ).

1.1.5 Tdin() This function has arguments θ , oa� , and a ; it returns the duct
temperature dinθ needed to achieve this steady solution.  Model based control is
the application target for this function, which would be used to select the changes
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of duct inflow temperature to when estimated  glass temperature is not the desired
θ value.

1.2.   Example calculation.  With the function ‘Tdin()’ above, the calculation of  Chui’s

Fig.9  centerline case can be approximated with input a = 0.8943, θ =0.8678 ( 850 deg F

exit glass temperature), and oa� =90 ft (27.4 m)/ oL̂ ; the returned duct input temperature

is dinθ =0.7426 (676 deg F ) with dinθ =0.8707 (855 deg F).  This duct temperature profile

lies in the middle of the centerline-to-edge profiles Chui shows, so long as the oL̂  value
fitted in Fig. 1(a) is used.   Beyond this, the control coefficients he discusses are simple
double calls and finite difference formulae.  CPU time is completely negligible, well
below a millisecond per call on a 266 MHz laptop.  Another useful application
envisioned for these functions is generation of meshes for more detailed calculations of
radiative exchange, to produce near-optimal nodal distributions along the ribbons and
ducts for both efficiency and for uniform numerical error control.  For the source code of
these functions, see App. 2.

2. FINITE WIDTHS AND LENGTHS

The ‘infinitely wide’ approximation treated in the previous section is the ideal
situation which lehr design attempts to approach, by using low headroom between ribbon
and ducts, well-insulated sidewalls, etc.  However, the ribbon and lehr are not infinitely
wide, so the radiative exchange must take account of the enclosure geometry.  The first
step in this direction was discussed by Chui [1] and later by Gardon [2].  These analyses
considered radiative viewfactor effects in the calculation of the radiative flux, and used
the same  presumption of independence of the flux on axial temperature variations of the
ducts as in the previous section. The glass was not transparent to any spectral range of the
radiation in these treatments.

When the geometry effects on the viewfactors cannot be ignored, and when the
glass is semitransparent, it becomes necessary to calculate them in an economical way.  If
it is presumed that the glass heat conduction problem will be given a Lagrangian
treatment, in order that its internal radiative exchange with the surroundings be
conveniently treated (see Sect. 3 below, and Ref. [3]), then the viewfactors need to be
provided as a function of arbitrary position of the element of glass being considered.
Fortunately, the lehr is predominately made up of plane elements, so its walls, ends, and
ducts can all be represented as planar rectangles arranged so as to make up the
enclosure.(Fig. 3).   Therefore, the ability to calculate the viewfactors of two rectangles at
arbitrary distance and arbitrary orientation to each other is the most difficult calculation
required.  This can be carried out in closed form by application of ‘viewfactor algebra’
relations [5,6,7].  This has been done in the subroutines attached to this report as App. 3.
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Figure 3.  Lehr Geometry.  Typical lehr dimensions for flat glass production include a
glass ribbon of width around 10 feet (3 m), a lehr width around 15 feet (5 m) and total
height between duct surfaces around 3 feet (1 m).  Rollers support the glass ribbon as it
enters at the lower left and moves at several hundred inches per minute (0.15 m/sec)
through the lehr. Separately controlled ducts make up the ceiling (long strips on top with
solid lines) and on the floor (dashed lines below ribbon).  Glass throughput for numerical
examples is about 400 T/day (4.26 kg/sec).

Given the convenience of the viewfactor subroutines, they can also be used for a
prismatic approximation to the cylindrical surfaces of the rollers which support the glass
ribbon in a physically realistic model of the lehr.  This requires only the extension of a
one-dimensional quadrature to evaluate the local viewfactors for (prismatic) rollers.

If rollers are included in the radiative calculation, consistency demands that they
be given contact  conductive boundary conditions as well.  However, the possible
conditions of contact are so varied that there is no unique model for this effect.  Here, we
expect to parameterize the contact, compare simulated surface temperatures of the ribbon
to measured values, and fix the model parameters for the industrial site at which the lehr
models are to be applied.
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Figure 4.  Some viewfactors for the geometry of Fig.3.  A point on the ribbon centerline,
will see a 3 ft (1 m) wide duct at distance 1 ft (0.2 m) above, with the viewfactor rising
from 0.1 to 0.35 as it moves into the lehr, away from the entry end panel.  This point will
see the next duct to the side with a viewfactor varying from 0.02 to 0.07 (“centerline,
duct 4.5 ft to the side”), and the third duct even more weakly (“centerline, duct 7.5 ft to
the side”).  Were the 0.35 asymptote 0.50 instead, the plane parallel solution would be
exact.  The sidewall viewfactor, deep in the lehr,  would be about 0.14 for this example.
The end panel visible above the ribbon has viewfactors as seen by particles on the ribbon
centerline and on the ribbon edge which decline as the particles move into the lehr, but
the distance required to reduce it by a factor of 10 is about 10 feet, a substantial portion
of the conditioning zone length, or of the anneal section.

When models of the detail that includes rollers are handled, it becomes necessary
to provide convenient electronic definitions of the model geometry and material
properties.  This definition has begun, and communicates with the user in convenient
units such as throughput in ‘tons/day’.  Sample files to define the lehr and ribbon are
displayed in App. 4.
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Figure 5.  Image for highly-reflective roller.  Segment of glass ribbon along line  A NB
can be viewed directly from point P on the lehr floor.  It is also seen at P as a distorted
image BN’A’ reflected through the segment of the cylindrical roller arc CB-CN-CA  The
image BN’A’ is constructed by ray tracing from P to a point of contact such as CA, where
the ray from A to CA makes and equal angle to the  radius from the roller center C.  Then
the length of A- CA is laid out along the direction P- CA to define point A’ on the image.
The image can then be meshed to include this reflected energy in the flux received at P.
Of course, P also receives the  diffuse radiation from roller arc CB-CN-CA .  A similar
consideration will show that the next segment of the roller below this arc reflects an
image of the roller to the left, then the next segment reflects an image of the floor (which
trace multiple reflections from glass or rollers, so it is applicable only when such an
approximation is accurate.  The subroutine ‘im.f’ in App. 4 lists the source code for this
calculation.

3. HEAT TRANSFER WITHIN THE RIBBON

The heat transfer effects discussed above include only radiative transfer at the
surface of the ribbon, and at the surface of the duct.  This formulation is fully
characterized by the dimensionless parameters of Section 1, with the additional
dimensionless geometric parameters such as gw / oL̂  , h / oL̂   , etc, where  gw  is the finite
width of the ribbon, h  is the height of the lehr sidewall, etc.  The viewfactors ijF  which
connect surfaces ‘i’ and ‘j’ are, of course, also dimensionless inputs to the heat transfer
calculation in that treatment.  This presumes that the glass can conduct whatever flux is
needed to accomplish the bulk temperature changes described by variations of the
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temperature  θ .  The issues arising in assuring that the fluxes computed in the enclosure
exchange are consistent with the actual ribbon thickness gt  moving at velocity gV  will be
treated in a forthcoming description of a calculation with glass as a participating medium
in Ref. [3].

4. STRESSES

The lehr is fundamentally an annealing oven, and is meant to control residual stresses in
the ribbon.  If model based control is to operate in real time on presently practical (i.e.,
economical) computers, it must assess these stresses in as simple a manner as possible
while remaining faithful to the actual sensitivity to changes in process variables.  We
assume that there is a ‘strength of materials’ approximation to the relevant stresses, in
which changes in fiber length can be computed by one-dimensional expressions, and
these strains used to estimate the mechanical stresses needed to maintain continuity of the
ribbon, in the same spirit as Adams and Williamson [10].

In its passage through the annealing lehr, a glass ribbon changes its state from a
rapidly relaxing viscous liquid medium to a “solid” with long-term residual stress.  The
change of state is induced by cooling the glass through its annealing temperature Ta
down to its strain temperature Ts.   Generally, the values of Ta and Ts are selected to
agree with the temperature at which viscosity is 10 13.5 and 10 14.5  Poise (10 12.5 and 10
13.5 Pa-s), respectively.   These are heuristically adjusted by aT∆  computed as

aT∆ =  avgRln86.8   + ( )avgR−165

to define upper and lower temperature limits on annealing for finite average cooling rates
avgR . Viscosity  µ  is taken to be a Fulcher value

µ  = ( )
�

�
�
�

−+
F

F
F TT

baexp .

The goal of the anneal process, in general, is to produce a residual stress state
which will survive the fabrication processes downstream as well as survive the service
environment of the glass part. Our treatment follows Narayanaswamy’s tutorial [12].
Both through-thickness and membrane stress is considered.

The governing relations for one-dimensional deformation are written in terms of a
reduced time ξ  defined in terms of the physical time by

ξ   =  ( ) ';
0

dtTT
t

fφ ,

i.e., glass is assumed to be ‘thermorheologically simple’ material, and where
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which includes activation energies  gH  and   fH , the universal gas constant R , and the
‘structural relaxation’ effect by including the ‘fictive temperature’ fT  calculated from

fT  =  T  +  ( ) ''
0

ξξξ dM
t

−

for the shift ( )
fb

ft
eM

�
�
�

�−
=

ξ

ξ defined by the two relaxation parameters fb  and ft .  Van
Zee & Noritake use an M composed of a sum of two exponentials, rather than a single
exponential with a power.  The net thermal strain thε  of a fiber at  time t will consist of
the instantaneous thermal strain and a structural relaxation term xr

thε  = LT ,α  ( )aTT −  - xr     where  xr  = ( LT ,α - gT ,α ) ( ) '
'

'
0

ξ
ξ

ξξ d
d

dT
M

t

−

allows the instantaneous glassy strain with linear coefficient of expansion gT ,α  to relax
toward the relaxed liquid expansion LT ,α .  Then, for a total strain  ε , the stress σ  in the
fiber is given by

σ  = 
ν−1
)0(E   ( ) ( )

'
'

'
0

ξ
ξ

εεξξ d
d

d
R th

t −
−

where the relaxation function ( )
vb

vteR
�

�
�
�−

=
ξ

ξ mirrors the form of M().  E(0) is the
instantaneous (‘glassy’) Young’s modulus, and   ν  is Poisson’s ratio.   Values for the
various parameters appearing here are summarized in App.5 below.

5. DISCUSSION

At this point, the elements of a simple quasisteady model which accepts as its input the
high level description of the lehr detailed in App.4 has been described.  The first two
portions of it, dealing with the simplest possible model of the radiative energy exchange
between the ribbon and enclosure elements, have been embodied in FORTRAN code.
The validation process has been limited to comparison with Chui’s results reported in
Ref. [1].  That comparison, it must be stressed, used a fitted value of the length scale oL̂ ,

namely, 6670 cm instead of the value 2985 cm which results from calculating oL̂  =

( gg Cm� )/ ( σε e
3

goT  ) from the values in his Table I.  This is a multiplier of 2.2, which
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suggests that perhaps the factor 2 in his eq.[1] was omitted from the numerical
calculations he reported.  The fact that both his Fig. 8(B) and Fig.9 results are essentially
reproduced with oL̂ =6670 cm reinforces this likelihood.

The plane parallel thermal solution can be evaluated before the glass ribbon has
moved 0.1 mm (i.e., in under a millisecond), so it is quite feasible to use it in a real time
control of the lehr.  Given sensor data, such as temperatures in an IR strip scanner, it
could calculate and return the adjustments required to move the quasisteady solution back
to the aim point.

For finer control than the plane parallel solution provides, the viewfactor values
could be used in numerically integrating the energy balance eqs.[1-7] of Chui.  The
parallel flow case is a simple initial value problem quadrature for a system of ordinary
differential equations, and is well treated by universally available software.  For the
counterflow case, it is necessary to solve a boundary value problem because the duct
inflow temperatures dinθ  (one value for each duct) are given at the far end (station x) of
the ribbon.  While  software packages exist which can accomplish this task automatically
with controlled error, it is more efficient numerically to use a dedicated code .  The  most
direct method for a robust solution with the known monotonicity properties here would
be to iteratively solve initial value problems with estimated dinθ values; that is, by
“shooting”.  Not only the initial estimate of these values, but perhaps their subsequent
iterations, could be obtained from the plane parallel solution above, very quickly and
completely robustly (since those routines make use of the information in Fig. 2).  In short,
using the software of sections 1 and 2 above, it should be possible to carry out the Chui
calculation in real time as well, during the time the ribbon moves around a few cm.  As
with the plane parallel solution, lehr control  adjustments should be possible, based on
calculations by such routines.

The next level of sophistication, in which the heat fluxes include radiative
participation by the interior of the ribbon, is beyond the scope of discussion here, and will
be treated in Ref. [3].   At present it seems that such a calculation may well prove
possible in a time useful for update of aim points, and perhaps even in real time.

The actual goal of the lehr is to manage stresses, and so the complete model based
control would connect the lehr settings with the residual stresses in the glass as it reaches
the cutting station.   Simulation of the stresses due to thermal strains can be done in a
“Strength of Materials” sense by use of one-dimensional calculations of fiber strains as
outlined in Section 4, and these strains used to calculate membrane stresses, perhaps with
the help of some plate equations to check for ribbon buckling; see Ref. [13].  This
remains for a future effort.
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APPENDIX A.  Derivation of the Plane Parallel Solution  and Asymptotic Forms

Separation of variables reduces the energy balance to quadrature:

( )oxx −   = - oL̂ ( )
θ

θ1 4 ,; auP

du

do

 .

The quartic polynomial ( )aP do ,;4 θθ  can be factored, and and expanded into the form:

( )44 bauu

du

+−
 = 22

1
u

{
( )22 bauu

du

+−
+

( )22 bauu

du

++
}

The quadrature can now be carried out explicitly [4], to give:
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Evaluating ( ))1()( GG −θ  and using the trigonometric identity for tan (x + y), [A1.1]
becomes eq.[2b].

In cases of counterflow, the first two ln() terms can very nearly cancel one another
(which they do exactly when b = 0 produces the Case 1 solution).  For computation in
that case, the corresponding ln() terms in ( ))1()( GG −θ  are expanded as

 ( )ε+1ln   + 
a

a

2
1 2+ ( )( )
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.                                   [A1.2]
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Finally, we note that the cases with  |a| = 1, b nonzero, can be integrated because the
integrand becomes cubic, and quadrature gives:

oxx −   =  - ( )asgn oL̂ 32
1
b

  ln 
( )( )

( )
( )

( )( )
�

�
�
�

�

+
+

+
+

2

2

22

2

sgn1
1sgn

do

do

d

d

a

a

θ
θ

θθ
θθ

Despite its quite different appearance, this form is a special case of the solution derived
above, and need not be treated separately.

In the counterflow case, a > 0 holds and the coefficient  ab do −=θ    can be zero
or negative.  When the solution (1) is evaluated with a small value of the coefficient b,
less than about 0.1, the finite precision arithmetic of a computer loses accuracy quite
noticeably, so it is necessary to have an asymptotic solution around b=0 to evaluate.  This
can be constructed by expanding the integrand in powers of

w  = 
u

ab2  + 2

2

u

b ,

which gives the expansion

( )41 a− ( ) co Lxx ˆ/−   =  
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1 4u

wdu   - ( )431 a+  
θ

1 4

2

u

duw   -

( )42 14 aa +  
θ

1 4

3

u

duw   - ( )84 5101 aa ++  
θ

1 4

4

u

duw  - …

from which the powers of b can be explicitly written.  The actual expansion parameter
which appears in the power series is  e  =  b / ( )41 a− , and it represents the solution as the
fourth order relation:
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and this is used with heuristically chosen values   -0.115 <  e  < 0.0827 in the routine
XEND().
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APPENDIX B.  Source Code for Evaluating the Plane Parallel Solution

program calibrate
c********************************************************************
c** Issued by Sandia National Laboratories, operated for the **
c** United States Department of Energy by Sandia Corporation. **
c** NOTICE **
c** This program was prepared in the course of work sponsored **
c** by an agency of the U.S.Government. Neither the United **
c** States Government nor any agency thereof, nor any of their**
c** employees, makes any warranty, express or implied, or **
c** assumes any legal liability or responsibility for the **
c** accuracy, completeness, or usefulness of any information, **
c** apparatus, product, or process disclosed, or represents **
c** that its use would not infringe privately owned rights. **
c** Reference herein to any specific commercial product, **
c** process, or service by trade name, trademark, manufacturer,*
c** or otherwise, does not necessarily constitute nor imply **
c** its endorsement, recommendation, or favoring by the United**
c** States Government, any agency thereof or any of their **
c** contractors or subcontractors. The views and opinions **
c** expressed herein do not necessarily state or reflect **
c** those of the United States Government, any agency thereof **
c** or any of their contractors or subcontractors. **
c** This code is supplied for official government use only. **
c** No further dissemination is permitted without specific **
c** permission from Sandia Laboratories, Livermore, CA 94551. **
c********************************************************************
c********************************************************************
c** **
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
c** **
c** Copyright 2000 (c) Sandia Corporation **
c********************************************************************
C********************************************************************
c Evaluate RHS of Apr00 version of closed-form plane-parallel
c radiative exchange solution for glass (g) ribbon and ducts (d).
c Input variables are the controlled quantities: heat advection
ratio 'a',
c and duct inflow dimensionless absolute temperature
thdin=Tdin/Tgo.
c These are held fixed, and the whole range of the third
independent
c variable (endpoint ribbon th=Tg/Tgo) is marched through to
display
c all possible solutions for the given 'a,thdin'.

open(unit=8,file='soln.dat',status='unknown')
open(unit=9,file='fort.9',status='unknown')
open(unit=66,file='cal.log',status='unknown')
hatL=5481.
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c Possible emissivity correction of 25%?
c hatL=1.205*hatL

hatL=1.25*hatL
c hatL=1076.

hatL=2765.
c hatL=3775.

hatL= 6670.
Tgo=838.6
Tdo=616.3

c Tdo=916.3
thdin=Tdo/Tgo

c To choose parallel flow, set this flag to 1; else, counterflow.
k8A=21

c Set an 'a' value, then march 'th' and compare the base solution
c to the asymptotics of order 0-4, in the counterflow case a > 0.

if(k8A.eq.1) then
a=-0.8576
a=-0.8943

else
a=0.8576
a=0.8943

c a=2.0
endif
nth=51
write(6,*) 'Initial XEND() calls: a,thdin,hatL=',a,thdin,hatL
write(66,*) 'Initial case: a,thdin,hatL=',a,thdin,hatL
bo=(thdin-a)
if(a.lt.1.) then
brange=-(thdin-a)+0.99*(1.-a)*thdin

else
brange=0.99*(1.-a)-bo

endif
c With a,b,thdin all specified, the counterflow solution is fixed.
c However, when thdin=thdo, th=1 and (x-xo)=0. This occurs when
the
c selected b-value is thdin-a, so the minimum b of the range must
be
c thdin-a. The maximum b must be 1-a, which requires infinite
length
c for the ribbon to cool from its degenerate initial condition
thdo=1.

db=(brange)/float(nth-1)
c
c For the parallel flow case, the marching must be on th, the
endpoint
c ribbon temperature, since a, b, thdin are not independent here.
Clearly,
c the th value goes from 1 (for zero length) to thc (for infinite
length),
c where thc is the convergence temperature of ribbon and duct.

if(abs(1.-a**2).le.1.e-4) then
thc=0.5*(thdin+1.)

else
thc=(thdin-a)/(1.-a)

endif
dth=(1.-thc)/float(nth)

c
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write(66,*) 'a,thdin-a,db=',a,thdin-a,db
do 10 i=1,nth
if(a.gt.0.) then
b=bo+db*float(i-1)
th=(thdin-b)/a
thdo=a + b

else
th=thc+dth*float(i)
b=thdin-a

endif
write(9,*) b,th,thdo,a,thdin
xth=xend(th,a,thdin,thdo,thd)
if(abs(th-thdo).gt.2.e-4*amax1(abs(th),abs(thdo))) then

c Display limit case (a=0) and components of 'xend':
xzero=xmin(thdin,th)
xcrunch=xdir(a,thdo,th)
xseries=xasymp(a,b,th)

else
xzero=1.
xcrunch=1.
xseries=1.

endif
if(a.gt.0.) then
thd=a*th+b
write(9,*) xth,th,xseries,xcrunch,xzero

else
thd=a*th+b
write(9,*) xth,th,thd,thdo

endif
10 continue

c
c Second example: Generate Chui plots for Fig.8:

thdin=0.734915
if(a.gt.0.) then

c Fig. 8B
a=0.8576
th=0.856
a=0.8943

cc a=2.0
th=(5.*(844.-32.)/9. + 273.)/Tgo

cc th=(5.*(1144.-32.)/9. + 273.)/Tgo
cc th=(5.*(1100.-32.)/9. + 273.)/Tgo

b=thdin-a*th
thdo=a+b

else
c Fig.8A

th=0.8764
th=(5.*(865.-32.)/9. + 273.)/Tgo
a=-0.8576
a=-0.8943
thdo=thdin

endif
write(6,*) ' Chui Fig 8 from Tofx() with a,th,thdin=',a,th,thdin
write(66,*) ' Fig 8 call XEND with a,th,thdin=',a,th,thdin
oal=xend(th,a,thdin,thdo,thd)

c Overall length for Chui: 90 ft X 30.48 cm/ft:
sta=90.*30.48/hatL
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write(66,*) 'oal,sta=',oal,sta
npts=101
ds=sta/float(npts-1)
do 20 i=1,npts
sta=amax1(1.e-5,ds*float(i-1))
write(66,*) ' Enter Tofx with oal=',oal,' and sta=',sta
tchk=Tofx(a,thdin,oal,sta)
write(66,*) ' Exit Tofx with i,thdin,tchk=',i,thdin,tchk
xft=hatL*sta/30.48
TdegF=tchk*Tgo*9./5.-460.
if(a.gt.0.) then
thd=a*tchk+b

else
thd=a*(tchk-1.)+thdin

endif
Tduct=thd*Tgo*9./5.-460.
write(8,*) xft,TdegF,Tduct,sta,tchk,thd

c write(66,*) ' End Tofx with th(oal)=',th,' and th(sta)=',
c & tchk,'; oal=',oal

20 continue

write(6,*) ' Chui Fig 8 curves Tofx() in file "soln.dat".'
c

th=0.86745
cc th=1.031

oal=xend(th,a,thdin,thdo,thd)
write(6,*) ' Calling aLEHR with thdin,th,oal; a=',thdin,th,oal,a
write(66,*) ' aLEHR arguments thdin,th,oal; a=',thdin,th,oal,a
astar=alehr(thdin,th,oal,thd,thdo,a2)
write(6,*) ' Roots from aLEHR(): astar,a2=',astar,a2

c Chui Fig. 9 sets glass exit temperature to 850 deg F,
c then length=90 ft; seeks Tdin for counterflow duct
c with a=0.8943 (same as Fig.8) to achieve this aim Tg.

th=0.8678
thdin1=0.734915
a=0.8576
a=0.8943

cc a=1.0
oal=90.*30.48/hatL

c th=1.031
c a=2.0
c oal=9.*30.48/hatL

write(6,*) ' Tdin() call with th,oal,a=',th,oal,a
write(66,*) ' Tdin() arguments th,oal,a=',th,oal,a
thdin=Tdin(th,oal,a,thd,thdo)
write(6,*) ' Tdin() returns th,a,oal,thdo,thdin='
write(6,*) th,a,oal,thdo,thdin
alen=xend(th,a,thdin,thdo,thd)
write(6,*) ' For th,a,thdin=',th,a,thdin,', XEND()=',alen
stop
end

c
function alehr(thdin,th,oal,thd,thdo,a2)

c********************************************************************
c********************************************************************
c** **
c** Subroutines for Flat Glass Lehr Thermal Simulation **
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c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
c** **
c** Copyright 2000 (c) Sandia Corporation **
c********************************************************************
C********************************************************************
c Given a dimensionless lehr length 'oal' and a duct input absolute
dimensionless
c temperature ratio 'thdin' and the target glass temperature
th=Tg/Tgo,
c find the heat advection ratio 'a' for the duct and return it as
'alehr';
c also return as an argument the second value 'a2' of opposite
sign.
c Also return duct temperature ratios at xo (thdo) and at exit oal
(thd).

k=0
kmax=50
eps = 1.e-4
tol=amax1(eps,eps*oal)

c Start by seeking parallel flow (a < 0) solution:
if(abs(1.-th).lt.eps) then

cc write(66,*) ' Abort ALEHR because ribbon ends with',
cc & ' th = Tg/Tgo =',th

alehr=1.
a2=-1.
return

endif
c Locate smallest feasible 'a' value, where ribbon and duct
temperatures
c converge in parallel flow:

amin=(1.-3.e-6)*(thdin-th)/(1.-th)
xinf=xend(th,amin,thdin,thdo4,thd4)

cc write(66,*) 'Parallel flow amin=',amin,' has scaled
length=',xinf
c Locate largest feasible 'a', which arises when duct temperature
c at glass inflow station xo is equal to the glass temperature;
ducts
c are counterflow in this case:

amax=(1.-3.e-6)*(1.-thdin)/(1.-th)
xinfc=xend(th,amax,thdin,thdo4,thd4)

cc write(66,*) 'Counterflow amax=',amax,' has scaled
length=',xinfc
c Examine length for infinite duct flow (a=0) case:

a0=0.
xmin=xend(th,a0,thdin,thdo4,thd4)

cc write(66,*) ' Isothermal duct flow a=0 case has scaled
length=',
cc & xmin
c Check input arguments for consistency: can 'oal' be reached for
this
c thdin,th pair?
cc write(66,*) ' Feasible range of lengths is',xmin,' to max of',
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cc & xinf,xinfc
if(oal.lt.xmin.or.oal.gt.amax1(xinf,xinfc)) then

c Solution is not feasible
cc write(66,*) 'ALEHR cannot reach the input oal=',oal
cc write(66,*) ' feasible range of lengths is',xmin,' to max
of',
cc & xinf,xinfc
c Return error flag alehr=0.

alehr=0.
return

endif
c Proceed with bisections to locate parallel flow solution:

aL=amin
xL=xinf
sL=1.

c Set right point as essentially zero:
aR=-0.00001
xR=xend(th,aR,thdin,thdo4,thd4)
targ=oal
if(abs(xL-oal).le.tol) then

c Converged; quit:
alehr=aL
go to 15

c else bisection to right is already set up
endif

c Parallel flow:
thdo=thdin
thd=a*th+thdo-a
sL=sign(1.,xL-targ)
sR=sign(1.,xR-targ)

cc write(66,*) ' Start ALEHR bisection with
aL,aR,xL,xR,sL,sR,targ='
cc write(66,*) aL,aR,xL,xR,sL,sR,targ
cc write(66,*) ' Bisection gives xL, targ, xR values at aM : '

10 continue
aM=0.5*(aL+aR)

cc write(66,*) xL,targ,xR,aM
b=thdin-aM
xM=xend(th,aM,thdin,thdo,thd)
if(xM.lt.0.) then

c Identify error flag:
if(xM.gt.-1.5) then

cc write(66,*) ' Error in ALEHR for counterflow; aM,th,thdin=',
cc & aM,th,thdin

alehr=1.0
return

cc stop
else

cc write(66,*) ' Error in ALEHR for parallel flow; a,th,thdin=',
cc & a,th,thdin

alehr=-1.0
return

cc stop
endif

endif
sM=sign(1.,xM-targ)
if((sM*sR).gt.0.) then
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c Left half contains root:
xR=xM
sR=sM
aR=aM

else
c Right half contains root:

xL=xM
sL=sM
aL=aM

endif
if(abs(aR-aL).le.1.e-6) then

c Converged
alehr=0.5*(aL+aR)

else
k=k+1
if(k.le.kmax) then

c Continue bisection
go to 10

else
cc write(66,*) ' ALEHR() giving up after',k,' bisections.'

alehr=aM
endif

endif
aL=-0.8576
xL=xend(th,aL,thdin,thdo,thd)

cc write(66,*) ' xend(a=',aL,') =',xL,'; thd,thdo=',thd,thdo
cc write(66,*) 'ALEHR solved parallel flow; a=',aM,' gives
xM=',xM,
cc & ' while oal=',oal
c For parallel flow, the task is finished; for counterflow, the
c conditions are established, and bisection can proceed.

15 continue
write(66,*) ' Start counterflow with th,thdin,oal=',th,thdin,oal
aR=amax
sa=1.
xR=xinfc

cc write(66,*) ' ALEHR sets xR=',xinfc,' for a=',aR,
cc & ' and th,thdin=',th,thdin,'.'

aL=0.0001
xL=xend(th,aL,thdin,thdo,thd)
thdo4=thdo

c Now have xM consistent with 'a' and 'thdin,th' inputs. Correct
'a' to
c get nearer given oal:

sL=sign(1.,xL-targ)
sR=sign(1.,xR-targ)

cc write(66,*) ' For aL=',aL,' get xL,sL=',xL,sL
k=0

20 continue
aM=0.5*(aL+aR)

cc write(66,*) xL,targ,xR,aM
b=thdin-aM
xM=xend(th,aM,thdin,thdo,thd)
if(xM.lt.0.) then

c Identify error flag:
write(6,*) ' Abort in aLEHR().'
if(xM.gt.-1.5) then
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cc write(66,*) ' Error in ALEHR for counterflow; aM,th,thdin=',
cc & aM,th,thdin

stop
else

cc write(66,*) ' Error in ALEHR for parallel flow; a,th,thdin=',
cc & a,th,thdin

stop
endif

endif
sM=sign(1.,xM-targ)
if((sM*sR).gt.0.) then

c Left half contains root:
xR=xM
sR=sM
aR=aM

else
c Right half contains root:

xL=xM
sL=sM
aL=aM

endif
if(abs(aR-aL).le.1.e-6) then

c Converged
a2=0.5*(aL+aR)

else
k=k+1
if(k.le.kmax) then

c Continue bisection
go to 20

else
cc write(66,*) ' ALEHR() giving up after',k,' bisections.'

a2=aM
endif

endif
cc write(66,*) 'ALEHR succeeded in counterflow; a2=',a2,
cc & ' gives xM=',xM,' while oal=',oal

aL=0.8576
xL=xend(th,aL,thdin,thdo,thd)

cc write(66,*) ' xend(a=',aL,') =',xL
return
end

c
function Tofx(a,thdin,oal,sta)

c********************************************************************
c********************************************************************
c** **
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
c** **
c** Copyright 2000 (c) Sandia Corporation **
c********************************************************************
c********************************************************************
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c Given heat advection ratio 'a' and duct inflow 'thdin' at overall
length 'oal',
c determine the ribbon dimensionless temperature 'Tofx' at
dimensionless
c disatance 'sta' along the ribbon. Find 'sta' by bisection, using
the
c closed form solution 'xend()'; precision of 'sta' is set to six
figures.
c

k=0
kmax=50
eps=1.e-6
tR=1.
xR=0.
xL=1.e11
if(a.gt.0.) then

c Counterflow:
tL=thdin
targ=oal
if(thdin.gt.1.) then
tL=1.
xL=0.
if(a.lt.1.) then
tR=thdin
xR=1.e11

else
tR=1.+(thdin-1.)/a
xR=1.e11

endif
endif

else
c Parallel flow; convergence T on left:

tL=(thdin-a)/(1.-a)
targ=sta

endif
sL=sign(1.,xL-targ)
sR=sign(1.,xR-targ)

10 continue
tM=0.5*(tL+tR)
th=tM
xM=xend(th,a,thdin,thdo,thd)
if(xM.lt.0.) then

c Identify error flag:
write(6,*) ' Abort in Tofx().'
if(xM.gt.-1.5) then

cc write(66,*) ' Error in Tofx() for parallel flow;
a,th,thdin=',
cc & a,th,thdin

stop
else

cc write(66,*) ' Error in Tofx() for counterflow; a,th,thdin=',
cc & a,th,thdin

stop
endif

endif
sM=sign(1.,xM-targ)
if((sM*sR).gt.0.) then
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c Left half contains root:
xR=xM
sR=sM
tR=tM

else
c Right half contains root:

xL=xM
sL=sM
tL=tM

endif
if(abs(tR-tL).le.eps) then

c Converged
Tofx=0.5*(tL+tR)

else
k=k+1
if(k.le.kmax) then

c Continue bisection
go to 10

else
cc write(66,*) ' Tofx() giving up after',k,' bisections.'

Tofx=tM
endif

endif
cc write(66,*) 'Tofx solved stage 1; th=',tM,' gives xM=',xM
cc write(66,*) ' inputs were a=',a,', while oal=',oal,
cc & ' and sta=',sta
c For parallel flow, the task is finished; for counterflow, the
initial
c conditions are established, and the evaluation can proceed.

if(a.lt.0.) return
c Set up bisection for th between 1. and Tofx, and find
c thd value appropriate to 'sta'

targ=sta
tL=1.
tR=Tofx
xL=0.
xR=oal
if(sta.gt.oal) then
xR=1.e11
thc=amax1(0.,(Tofx-a)/(1.-a))
tR=eps+thc

endif
sL=sign(1.,xL-targ)
sR=sign(1.,xR-targ)
k=0

20 continue
tM=0.5*(tL+tR)
th=tM
targ=sta

cc write(66,*) ' Calling XCOUNT with inputs a,thdo,th=',a,thdo,th
xM=xcount(a,thdo,thdin,th,thd)
sM=sign(1.,xM-targ)

cc write(66,*) 'XCOUNT returns tL,tR,xL,xR,sL,sR,xM='
cc write(66,*) tL,tR,xL,xR,sL,sR,xM

if((sM*sR).gt.0.) then
c Left half contains root:

xR=xM
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sR=sM
tR=tM

else
c Right half contains root:

xL=xM
sL=sM
tL=tM

endif
if(abs(tR-tL).le.eps) then

c Converged
Tofx=0.5*(tL+tR)

else
k=k+1
if(k.le.kmax) then

c Continue bisection
go to 20

else
cc write(66,*) ' Tofx() giving up after',k,' bisections.'

Tofx=tM
return

endif
endif

cc write(66,*) 'Tofx succeeded in counterflow; th=',tM,
cc & ' gives xM=',xM,' while sta=',sta

return
end

c
function xend(th,a,thdin,thdo,thd)

c********************************************************************
c********************************************************************
c** **
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
c** **
c** Copyright 2000 (c) Sandia Corporation **
c********************************************************************
c********************************************************************
c Evaluate closed-form solution for glass length 'xend' at which
the
c dimensionless absolute temperature Tg/Tgo = th, when given the
mass flow
c ratio a = [(dm/dt)*Cp]g/[(dm/dt)Cp]d and duct inflow
thdin=Td/Tgo.
c In counterflow case, a smooth asymptotic approximation is
provided when
c Td is nearly a*Tg. Returns duct temperatures at xo (thdo) and at
x (thd),
c as well as dimensionless length xend=(x-xo)/Lc.
c Error flags are xend=-1. (parallel flow error) and -2.
(counterflow error).

if(abs(a).le.2.e-4) then
c Isothermal ducts with infinite heat capacity:
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thdo=thdin
val=xmin(thdo,th)
xend=val
thd=thdo
return

endif
if(a.gt.0.) then

c Counterflow:
thd=thdin
b=thd-a*th
thdo=b+a
thc=(thdo-a)/(1.-a)

c Checking input 'th' consistency: on same side of 'thc' as 1?
sc=sign(1.,(th-thc)*(1.-thc))

if(sc.lt.0.) then
cc write(66,*) 'XEND inputs physically unrealistic:'
cc write(66,*) ' With a,b,th,thdin,thdo=',a,b,th,thdin,thdo
cc write(66,*) 'Return xend=-2. error flag.'

xend=-2.
return

endif
c Select heuristic join between asymptotics and direct evaluation.

blow=amin1((-0.118*(1.-a**4)),(0.0827*(1.-a**4)))
bhigh=amax1((-0.118*(1.-a**4)),(0.0827*(1.-a**4)))
blow=(-0.118*(1.-a**4))
bhigh=(0.0827*(1.-a**4))

cc write(66,*) 'XEND blow=',blow,' and bhigh=',bhigh,', b=',b
if(abs(1.-a**2).le.1.e-4) then

cc write(66,*) 'Degenerate XEND case with a=1.'
c Requires direct evaluation to avoid NaNs, Infs.

bhigh=0.5*blow
if(abs(b).le.(1.e-3)) then

cc write(66,*) ' XEND has degenerate case a=b=0 with a,b=',a,b
xend=1.e10
return

endif
endif

else
c Parallel flow:

thdo=thdin
c Check for physically possible solution by computing converging
c temperature value for duct and ribbon:

thc=(thdo-a)/(1.-a)
if((th-thc)*(1.-thc).lt.0.) then

cc write(66,*) 'Inputs to XEND are not physically realizable:'
cc write(66,*) ' The given ratio of mass flows was a=',a
cc write(66,*) ' and the initial temperatures, th=1 and
thdo=',thdo
cc write(66,*) ' Convergence T/Tgo =', thc,'.'
cc write(66,*) 'Abort XEND, return xend=-1.'

xend=-1.
return

endif
b=thdo-a
thd=a*th+b

c Suppress calls to power series in 'b':
blow=1.1
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bhigh=1.0
endif
if(b.gt.blow.and.b.lt.bhigh) then
xth=xasymp(a,b,th)

else
c Direct evaluation of general solution:

xth=xdir(a,thdo,th)
endif
xend=xth
return
end

c
function xcount(a,thdo,thdin,th,thd)

c********************************************************************
c********************************************************************
c** **
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
c** **
c** Copyright 2000 (c) Sandia Corporation **
c********************************************************************
c********************************************************************
c Evaluate closed-form solution for glass length 'xcount' in
counterflow.
c Inputs are dimensionless heat advection ratio 'a', the duct
initial
c dimensionless absolute temperature Tdo/Tgo = thdo, and a
c glass temperature th=Tg/Tgo which is not at the station x
c where the duct inflow temperature 'thdin' occurs; 'xcount' is
c the station at which 'th' occurs.
c From these, evaluate the closed-form solution for distance
c 'xcount', and duct temperature thd=Td/Tgo at 'xcount'.
c The counterflow case uses a smooth asymptotic approximation when
c Td is nearly a*Tg.
c Error flag is xend=-2. (counterflow error).

if(abs(a).le.2.e-4) then
c Isothermal ducts with infinite heat capacity:

val=xmin(thdo,th)
xcount=val
thd=thdo
return

endif
if(a.gt.0.) then

c Counterflow:
b=thdo-a
thd=a*th+b
thc=(thdo-a)/(1.-a)
sc=(th-thc)*(1.-thc)
if(sc.lt.0.) then

cc write(66,*) 'XCOUNT inputs physically unrealistic:'
cc write(66,*) ' Inputs were a,th,thdin=',a,th,thdin
cc write(66,*) 'Return xcount=-2. error flag.'
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xcount=-2.
return

endif
c Select heuristic joint between asymptotics and direct
evaluation.

blow=(-0.118*(1.-a**4))
bhigh=(0.0827*(1.-a**4))

else
cc write(66,*) 'XCOUNT has parallel flow input a=',a

xcount=-2.
return

endif
if(b.gt.blow.and.b.lt.bhigh) then
xth=xasymp(a,b,th)

else
c Direct evaluation of general solution:

xth=xdir(a,thdo,th)
endif
xcount=xth
return
end

c
function Tdin(th,oal,a,thd,thdo)

c********************************************************************
c********************************************************************
c** **
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
c** **
c** Copyright 2000 (c) Sandia Corporation **
c********************************************************************
c********************************************************************
c Given a dimensionless lehr length 'oal', the heat advection ratio
'a'
c and the target glass temperature th=Tg/Tgo, find and return as
'Tdin'
c the duct input absolute dimensionless temperature ratio 'thdin'
c Also return duct temperature ratio at exit oal (thd) and at glass
c entry xo (thdo), unambiguously labelled.

k=0
kmax=50
eps = 1.e-6
tol=amax1(eps,eps*oal)

c Start by seeking parallel flow (a < 0) solution:
if(abs(1.-th).lt.eps) then

cc write(66,*) ' Abort Tdin() because ribbon ends with th =',
cc & ' Tg/Tgo =',th

Tdin=-1.
return

endif
if(a.lt.0.) then
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c Locate smallest feasible 'oal' value, with thdo=0 in parallel
flow:

thdin=0.
tL=0.
aminl=xend(th,a,thdin,thdo,thd)

cc write(66,*) 'Parallel flow aminl=',aminl,' for thdo=0 in
Tdin().'
c Now locate infinite 'oal' value, with th=convergence in parallel
flow:

thdin=a+(1.-a)*th -1.e-6
tR=thdin
ainfl=xend(th,a,thdin,thdo,thd)

cc write(66,*) ' Max oal=ainfl=',ainfl,' for thdo=thc in
Tdin().'

else
c Range of thdo for counterflow (a > 0)
cc write(66,*) ' Set up bisection for counterflow.'
c Lower limit for thdo in cooling:

tL=a*(1.-th)
c Upper limit for thdo in heating with a > 1:

tR=100.
if(th.gt.1.) then

c Heating:
tL=1.+10.*eps
if(a.lt.1.) then
tL=a+(1.-a)*th

endif
else

c Cooling:
tR=1.-10.*eps
tR=amin1(tR,0.999*(th+a*(1.-th)))

endif
thdo=tL
thdin=a*th+thdo-a
aminl= xcount(a,thdo,thdin,th,thd)

c Infinite length when thdo=tR:
amaxl= xcount(a,tR,thdin,th,thd)

c Because these may interchange roles, check to assure
c that tL is associated with the smaller x-xo:

if(amaxl.lt.aminl) then
xL=amaxl
amaxl=tL
tL=tR
tR=amaxl
xR=aminl

else
xL=aminl
xR=amaxl

endif
ainfl=xR

cc write(66,*) ' Counterflow: ',tL,'.lt.thdo.lt.',tR,'.'
cc write(66,*) ' ',xL,'.lt.oal.lt.',xR,'.'

thdo=0.5*(tL+tR)
if(thdo.ne.123.) go to 6
do 5 i=1,kmax
thdinx=thdinx+0.1*((0.5)**i)
thdo=thdinx
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thdin=a*th+thdo-a
ainflx= xcount(a,thdo,thdin,th,thd)
if(ainflx.gt.0.) then
tR=thdo
ainfl=ainflx

else
go to 6

endif
5 continue
6 continue

thdin=a*th+thdo-a
ainfl= xcount(a,tR,thdin,th,thd)
aminl=xL

cc write(66,*) ' Counterflow range for oal is',aminl,' to',
cc & ainfl,'.'
cc write(66,*) ' obtained for thdo=',tL,tR

endif
if(oal.gt.ainfl) then

c Singular solution:
Tdin=thdin
if(a.gt.0.) then
thd=thdin
thdo=thd-a*th+a

else
thdo=thdin
thd=a*th+thdo-a

endif
return

elseif(oal.lt.aminl) then
c Physically inconsistent inputs to Tdin():
cc write(66,*) ' Inconsistent inputs to Tdin(): oal=',oal
cc write(66,*) ' but aminl=',aminl,' is minimum possible',
cc & ' ribbon length'
cc write(66,*) ' for input th,a=',th,a

Tdin=-1.
thdo=-1.
thd=-1.
return

endif
7 continue

c Bisect interval:
xR=ainfl
xL=aminl
targ=oal
sL=sign(1.,xL-targ)
sR=sign(1.,xR-targ)

cc write(66,*) ' Bisections for Tdin(): xL,oal,xR,tM'
10 continue

tM=0.5*(tL+tR)
cc write(66,*) xL,oal,xR,tM

thdin=tM
if(a.lt.0.) then
xM=xend(th,a,thdin,thdo,thd)

else
thdo=tM
thdin=a*th+thdo-a
xM= xcount(a,thdo,thdin,th,thd)
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endif
if(xM.lt.0.) then

c Identify error flag:
write(6,*) ' Abort in Tdin().'
if(xM.gt.-1.5) then

cc write(66,*) ' Error in XEND for parallel flow; a,th,thdin=',
cc & a,th,thdin

stop
else
write(6,*) ' Error in XEND for counterflow; a,th,thdin=',

& a,th,thdin
stop

endif
endif
sM=sign(1.,xM-targ)
if((sM*sR).gt.0.) then

c Left half contains root:
xR=xM
sR=sM
tR=tM

else
c Right half contains root:

xL=xM
sL=sM
tL=tM

endif
if(abs(tR-tL).le.eps) then

c Converged
Tdin=0.5*(tL+tR)

else
k=k+1
if(k.le.kmax) then

c Continue bisection
go to 10

else
cc write(66,*) ' Tdin() giving up after',k,' bisections.'

Tdin=tM
endif

endif
if(a.gt.0.) then

c Counterflow:
thdo=Tdin
thd=a*th+thdo-a
Tdin=thd

endif
cc write(66,*) 'Tdin solved for thdin=',Tdin,', giving xM=',xM
cc write(66,*) ' inputs were a=',a,', and oal=',oal

return
end

c
function xdir(a,thdo,th)

c********************************************************************
c********************************************************************
c** **
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **
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c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
c** **
c** Copyright 2000 (c) Sandia Corporation **
c********************************************************************
c********************************************************************
c Evaluating full solution directly to get dimensionless
c distance 'xdir' for given heat advection ratio 'a', given
c duct temperature at station xo 'thdo', and final temperature
c ratio 'th'. Calling program must have checked that a.ne.0.,
c that a.ne.1, and that th.gt.(thdo-a)/(1-a) so that no
c operation below is singular.
c write(66,*) ' Direct XEND with th,thd,a,thdo=',
c & th,thd,a,thdo
cc if(abs(b).gt.1.e-3) then
c Nonzero b; full solution:

b=(thdo-a)
thd=a*th+b
thsq=th*th
thdsq=thd*thd
f1=(thsq+thdsq)/(1.+thdo**2)
f2=(1.-thdo**2)/(thsq-thdsq)
f12=f1*f2
fp3=(th-thd)/(1.-thdo)
fp4=(1.+thdo)/(th+thd)
arg=fp3*fp4
exp1=(1.+a**2)/(2.*a)
f3=arg**exp1
val=(th*thdo-thd)/(th+thdo*thd)
val2=atan(val)
val3=-(1.-a**2)*val2/a
if((f1*f2*fp3*fp4-1.).gt.2.e-3) then
xth=-a*(val3+alog(f1*f2*f3))/(2.*b**3)

else
c Expand ln(1-eps) as -eps + 0.5*eps**2 :

f14=2.*(thdo*((th-thd)**2)-((1-thdo)**2)*th*thd)
f14=f14/((1.+thdo**2)*((th+thd)**2))
f12=f14+0.5*(f14**2)+((1.-a)**2)*(alog(fp3*fp4))/(2.*a)
xth=-a*(val3+f12)/(2.*b**3)

endif
xdir=xth
return
end

c
function xmin(thdo,th)

c********************************************************************
c********************************************************************
c** **
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
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c** **
c** Copyright 2000 (c) Sandia Corporation **
c********************************************************************
c********************************************************************
c For the maximum cooling rate, with a=0, the duct remains
c isothermal at 'thdo' and the distance to reach 'th' is
c the minimum possible. Distance 'xmin' is that dimensionless
c value. Calling program must have checked that a =0.,
c and that 'th' and 'thdo' are such that no operation below
c is singular.

f1=thdo*(th-1.)/(th+thdo**2)
f1=atan(f1)
f2=(th-thdo)/(1.-thdo)
f2=f2*(1.+thdo)/(th+thdo)
if(f2.gt.0.) then
f2=0.5*alog(f2)

else
xmin=1.
return

endif
c xmin=f2

xmin = (f1-f2)/(2.*(thdo**3))
return
end

c
function xasymp(a,b,th)

c********************************************************************
c********************************************************************
c** **
c** Subroutines for Flat Glass Lehr Thermal Simulation **
c** written by Lee A. Bertram **
c** Sandia National Laboratories **
c** Livermore, CA 94551 **
c** **
c** April 2000 **
c** **
c** **
c** Copyright 2000 (c) Sandia Corporation **
c********************************************************************
c********************************************************************

b4=1.e-4
b3=1.e-4
b2=1.e-6
b1=1.e-12

c Degenerate case; b=0 solution
a4m1=1.-a**4
e=b/a4m1
xth=((1./(th**3))-1.)/(3.*a4m1)
x0=xth
if(abs(b).gt.b1) then

c Asymptotic linear correction:
xth=xth-e*(a**3)*(1.-1./(th**4))/(a4m1)

endif
x1=xth
if(abs(b).gt.b2) then

c Asymptotic quadratic correction:
xth=xth-0.4*((e*a)**2)*(3.+5.*a**4)*
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& (1.-1./(th**5))/(a4m1)
endif
x2=xth
if(abs(b).gt.b3) then

c Asymptotic cubic correction:
xth=xth-(e**3)*(2.*a/3.)*(1.+10.*a**4+5.*a**8)*

& (1.-1./(th**6))/(a4m1)
endif
x3=xth
if(abs(b).gt.b4) then
pofa=1.+65.*(a**4)+155.*(a**8)+15.*(a**12)
xth=xth+pofa*(e**4)*((1./(th**7))-1.)/(7.*a4m1)

endif
x4=xth

xasymp=xth
return
end

c
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APPENDIX C.  Source Code for Radiative Viewfactors

program ex_vf_cyl
dimension Fkl(101)

c Calculates single heater element viewfactors.
c Fkl is an array of the viewfactor between a sample point
c point (xi,yj,0) in the (x,y) plane with area dA1, and a
c cylindrical element of length cL, diameter 2r, with its
c centroid over the origin at height h1. Each row at constant
c xi is computed as an array Fkl(j), and written to the
c output file 'Fkl.dat'.
c********************************************************************
c** Issued by Sandia National Laboratories, operated for the **
c** United States Department of Energy by Sandia Corporation. **
c** NOTICE **
c** This program was prepared in the course of work sponsored **
c** by an agency of the U.S.Government. Neither the United **
c** States Government nor any agency thereof, nor any of their**
c** employees, makes any warranty, express or implied, or **
c** assumes any legal liability or responsibility for the **
c** accuracy, completeness, or usefulness of any information, **
c** apparatus, product, or process disclosed, or represents **
c** that its use would not infringe privately owned rights. **
c** Reference herein to any specific commercial product, **
c** process, or service by trade name, trademark, manufacturer,*
c** or otherwise, does not necessarily constitute nor imply **
c** its endorsement, recommendation, or favoring by the United**
c** States Government, any agency thereof or any of their **
c** contractors or subcontractors. The views and opinions **
c** expressed herein do not necessarily state or reflect **
c** those of the United States Government, any agency thereof **
c** or any of their contractors or subcontractors. **
c** This code is supplied for official government use only. **
c** No further dissemination is permitted without specific **
c** permission from Sandia Laboratories, Livermore, CA 94551. **
c********************************************************************
c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c********************************************************************
c********************************************************************

open(unit=10,file='Fkl.dat',status='unknown')
open(unit=11,file='Fkl.log',status='unknown')
open(unit=12,file='Fkl.plt',status='unknown')
open(unit=13,file='vwx.plt',status='unknown')
pi=4.*atan(1.)
cL=10./12.
r=1./24.

c Quadrature to get viewfactor of cylinder of radius r,
c length cL. Sample point dA1 is distance yc perpendicular
c to cylinder axis, and height hc from axis. Cylinder's near
c face is xf away from dA1; its far end is at xf+cL. Ends are
c not included in viewfactor. Sample point dA1 is at height
c h1 above origin: h1=hc+r.
c Start at element centroid:



- 46 -

hc=0.5
c hc=2.

xf=-0.5*cL
dx=1./12.
dy=1./12.
jmax=51
imax=51
write(6,*) ' '
write(6,*) 'Computing cylinder viewfactor from dA1.'
write(6,*) 'Writing ',imax,' X ',jmax,' array of viewfactors.'
write(6,*) 'Viewfactors written to file "Fkl.dat" for axial'
write(6,*) 'and transverse spacings dx,dy=', dx,dy,'.'
write(10,*) imax,jmax,dx,dy,cL,r,hc
sum=0.
rect=0.
dsum=2.*hc*dx/(r*cL)
drect=2.*dx*dy/(pi*r*cL)
zc=2.0
h1=hc+zc
do 30 i=1,imax
yc=0.0
do 20 j=1,jmax
ycn=yc
xarg=xf
Fkl(j)=cyl2(ycn,zc,xarg,r,cL,h1)
write(12,*) yc,Fkl(j)
rfac=1.
if(j.eq.1.or.j.eq.jmax) then
qfac=1.
rfac=0.5
if(i.eq.1.or.i.eq.imax) then
qfac=0.5
rfac=0.25

endif
if(j.eq.1) then
sum=sum+qfac*dsum*Fkl(j)

endif
if(j.ne.jmax) then
write(13,*) xf,Fkl(j),sum,rect

endif
endif
rect=rect+rfac*drect*Fkl(j)
yc=yc+dy

20 continue
xf=xf+dx
write(10,101) (Fkl(j),j=1,jmax)

30 continue
close(10)
close(11)
close(12)

101 format(31e13.4)
write(6,*) ' Viewfactors done.'
write(6,*) ' Enclosing cylinder P1/P2=',sum
write(6,*) ' Rectangle P1/P2=',rect
write(6,*) ' '
stop
end
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c
c

function vert(a,b,c,g,h)
c Compute viewfactor of rectangle with sides a and b, in a plane
c perpendicular to the plane of a sample point with area dA1.
c Let lower left corner of the rectangle have coordinates (g,h)
c (displaced by g along side a, and by h along
c and side b) relative to normal dropped from dA1 onto
c rectangle's plane. (Both g and h can be negative).
c See Spiegel & Howell Appendix C: 'Selected Configuration
c Factors'.
c********************************************************************
c********************************************************************
c** Issued by Sandia National Laboratories, operated for the **
c** United States Department of Energy by Sandia Corporation. **
c** NOTICE **
c** This program was prepared in the course of work sponsored **
c** by an agency of the U.S.Government. Neither the United **
c** States Government nor any agency thereof, nor any of their**
c** employees, makes any warranty, express or implied, or **
c** assumes any legal liability or responsibility for the **
c** accuracy, completeness, or usefulness of any information, **
c** apparatus, product, or process disclosed, or represents **
c** that its use would not infringe privately owned rights. **
c** Reference herein to any specific commercial product, **
c** process, or service by trade name, trademark, manufacturer,*
c** or otherwise, does not necessarily constitute nor imply **
c** its endorsement, recommendation, or favoring by the United**
c** States Government, any agency thereof or any of their **
c** contractors or subcontractors. The views and opinions **
c** expressed herein do not necessarily state or reflect **
c** those of the United States Government, any agency thereof **
c** or any of their contractors or subcontractors. **
c** This code is supplied for official government use only. **
c** No further dissemination is permitted without specific **
c** permission from Sandia Laboratories, Livermore, CA 94551. **
c********************************************************************
c********************************************************************
c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c********************************************************************
c********************************************************************

pi=4.*atan(1.)
tol=1.e-4

c write(13,*) 'VERT gets',a,' X',b,' rectangle at',c,
c &' from dA1; offsets vert,horiz=',g,h

r=sqrt((a**2)+(b**2))
if(c.lt.tol*r) then

c dA1 is in contact with rectangle's plane;
if((g).lt.r*tol.and.(h).lt.r*tol) then
vert=0.50

else
vert=0.

endif
if(abs(g).lt.r*tol.and.abs(h).lt.r*tol) then
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vert=0.25
endif
return

endif
disp=sqrt(g**2+h**2)
if( (r.lt.c*tol).or.

& (g.gt.tol.and.h.gt.tol.and.r.lt.tol*disp) ) then
c Sample point at infinity:

vert=0.
return

endif
c First step: rectangle (a+g) X (h+b), with dA1 on its edge (from
c Handbook tables):

sg=sign(1.,g+0.1*tol)
x=(a+g)/(b+h)
y=c/(b+h)
rxy=sqrt(x**2+y**2)
vert=atan(1./y)-(y/rxy)*atan(1./rxy)

c write(11,*) c,x,y,rxy,vert
v1=vert
if(abs(h).lt.tol*r) go to 10

c Subtract rectangle (a+g)Xh with dA1 on its edge:
sh=sign(1.,h+0.1*tol)
x=(a+g)/h
y=c/(h*sh)
rxy=sqrt(x**2+y**2)
v2=sh*(atan(1./y)-(y/rxy)*atan(1./rxy))
vert=vert-v2

10 continue
if(abs(g).lt.tol*r) go to 20

c Subtract rectangle gX(b+h) with dA1 on its edge:
x=(g*sg)/(b+h)
y=c/(b+h)
rxy=sqrt(x**2+y**2)
v3=sg*(atan(1./y)-(y/rxy)*atan(1./rxy))
vert=vert-v3

20 continue
if((abs(g).lt.tol*r).or.(abs(h).lt.tol*r)) go to 30

c Add back double-subtracted rectangle gXh with dA1 on its edge:
sf=sg*sh
x=g*sg/h*sh
y=c/(h*sh)
rxy=sqrt(x**2+y**2)
v4=sf*(atan(1./y)-(y/rxy)*atan(1./rxy))
vert=vert+v4

30 continue
c write(13,*) h,v1,v2,v3,v4,sg,sh,sf

vert=vert/(2.*pi)
return
end

c
function horiz(a,b,c,g,h)

c Compute viewfactor of rectangle with sides a and b, in a plane
c parallel to the plane of a sample point with area dA1.
c Let lower left corner of the rectangle have coordinates (g,h)
c (displaced by g along side a, and by h along
c and side b) relative to normal dropped from dA1 onto
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c rectangle's plane. (Both g and h can be negative)
c See Spiegel & Howell Appendix C: 'Selected Configuration
c Factors'.
c********************************************************************
c********************************************************************
c** Issued by Sandia National Laboratories, operated for the **
c** United States Department of Energy by Sandia Corporation. **
c** NOTICE **
c** This program was prepared in the course of work sponsored **
c** by an agency of the U.S.Government. Neither the United **
c** States Government nor any agency thereof, nor any of their**
c** employees, makes any warranty, express or implied, or **
c** assumes any legal liability or responsibility for the **
c** accuracy, completeness, or usefulness of any information, **
c** apparatus, product, or process disclosed, or represents **
c** that its use would not infringe privately owned rights. **
c** Reference herein to any specific commercial product, **
c** process, or service by trade name, trademark, manufacturer,*
c** or otherwise, does not necessarily constitute nor imply **
c** its endorsement, recommendation, or favoring by the United**
c** States Government, any agency thereof or any of their **
c** contractors or subcontractors. The views and opinions **
c** expressed herein do not necessarily state or reflect **
c** those of the United States Government, any agency thereof **
c** or any of their contractors or subcontractors. **
c** This code is supplied for official government use only. **
c** No further dissemination is permitted without specific **
c** permission from Sandia Laboratories, Livermore, CA 94551. **
c********************************************************************
c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c********************************************************************
c********************************************************************

pi=4.*atan(1.)
tol=1.e-4
r=sqrt((a**2)+(b**2))
if(c.lt.tol*r) then

c dA1 is in contact with rectangle's plane;
if((g).lt.r*tol.and.(h).lt.r*tol) then
vert=1.0

else
vert=0.

endif
if(abs(g).lt.r*tol.and.abs(h).lt.r*tol) then
vert=0.25

endif
return

endif
disp=sqrt(g**2+h**2)
if( (r.lt.c*tol).or.

& (g.gt.tol.and.h.gt.tol.and.r.lt.tol*disp) ) then
c Sample point at infinity:

vert=0.
return

endif
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c First step: rectangle (a+g) X (h+b), with dA1 on its edge (from
c Handbook tables):

sg=sign(1.,g)
sh=sign(1.,h)
x=(a+g)/c
y=(b+h)/c
rx=sqrt(1.+x**2)
ry=sqrt(1.+y**2)
horiz=((x/rx)*atan(y/rx)+(y/ry)*atan(x/ry))
if(abs(h).lt.tol*r) go to 10

c Subtract rectangle (a+g)Xh with dA1 on its edge:
x=(a+g)/c
y=h*sh/c
rx=sqrt(1.+x**2)
ry=sqrt(1.+y**2)
horiz=horiz-sh*((x/rx)*atan(y/rx)+(y/ry)*atan(x/ry))

10 continue
if(abs(g).lt.tol*r) go to 20

c Subtract rectangle gX(b+h) with dA1 on its edge:
x=(g*sg)/c
y=(b+h)/c
rx=sqrt(1.+x**2)
ry=sqrt(1.+y**2)
horiz=horiz-sg*((x/rx)*atan(y/rx)+(y/ry)*atan(x/ry))

20 continue
if((abs(g).lt.tol*r).or.(abs(h).lt.tol*r)) go to 30

c Add back double-subtracted rectangle gXh with dA1 on its edge:
sf=sg*sh
x=g*sg/c
y=h*sh/c
rx=sqrt(1.+x**2)
ry=sqrt(1.+y**2)
horiz=horiz+sf*((x/rx)*atan(y/rx)+(y/ry)*atan(x/ry))

30 continue
horiz=horiz/(2.*pi)
return
end

c
function cyl(dc,hc,yc,r,cL)

c********************************************************************
c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c********************************************************************
c********************************************************************
c Compute the viewfactor of a cylinder of length cL, radius r as
c seen from dA1 which is hc below and dc to the right of the
c cylinder axis; the axis lies parallel to +y. Use the viewfactor
c of a strip of inclination alpha, width dw, and displacements
c (d,h), lying from yc to y2; obviously, cL=y2-yc.
c RESTRICTION: y2 must be positive, nonzero. Argument yc is
c modified to conform with this rule.

pi=4.*atan(1.)
tol=1.e-4
rtol=tol*sqrt(dc**2+hc**2+(yc+cL)**2)
if(yc.lt.0..and.(yc+cL).lt.rtol) then



- 51 -

yc=-(yc+cL)
endif
sdc=sign(1.,dc)
dc=sdc*dc
if(dc.lt.rtol) then

c write(11,*) ' CYL sees dc,hc,yc,rtol=',dc,hc,yc,rtol,
c & ' in closed form evaluation.'
c dA1 is on cylinder axis: check that it is outside cylinder:

if(hc.gt.r-rtol) then
c Closed form solution is:

sc=1.
cyl1=0.
if(abs(yc).gt.rtol) then

c Needs two evaluations:
sc=sign(1.,yc)
aL=sc*yc/r
aH=hc/r
aX=(1.+aH)**2+aL**2
aY=(1.-aH)**2+aL**2
cyl1=atan(sqrt((aH-1.)/(aH+1.)))
cyl2=atan(sqrt(aX*(aH-1.)/(aY*(aH+1.))))
cyl1=((aX-2.*aH)*cyl2/sqrt(aX*aY))-cyl1
cyl1= (atan(aL/sqrt(aH**2-1.))+aL*cyl1)/aH

endif
aL=(yc+cL)/r
aH=hc/r
aX=(1.+aH)**2+aL**2
aY=(1.-aH)**2+aL**2
cyl2=atan(sqrt((aH-1.)/(aH+1.)))
cyl3=atan(sqrt(aX*(aH-1.)/(aY*(aH+1.))))
cyl2=((aX-2.*aH)*cyl3/sqrt(aX*aY))-cyl2
cyl2= (atan(aL/sqrt(aH**2-1.))+aL*cyl2)/aH
cyl=(cyl2-sc*cyl1)/pi

else
c Inside (or on) cylinder:

cyl=0.
if(abs(hc-r).lt.rtol) cyl=1.

endif
dc=sdc*dc
return

endif
c dA1 has definite offset from cylinder axis: quadrature required.
c dA1 Can be inside or on cylinder; check (dc**2+hc**2)>r**2:

dist=sqrt(dc**2 + hc**2)
if(abs(dist-r).lt.rtol) then

c On cylinder at angle atan(hc/dc):
cyl=(atan(hc/dc))/pi
return

elseif(dist.lt.r-rtol) then
cyl=0.
return

endif
c Compute limits of integration; 'ang' measured from -y going ccw:

dphi=atan(r/sqrt(dc**2+hc**2))
angc=atan(hc/dc)
ang1=dphi-angc
ang2=pi-(dphi+angc)



- 52 -

c Choose number of evaluation points in quadrature (minimum
allowed=3):

iq=51
iq=max1(3,iq)
dang=(ang2-ang1)/float(iq-1)

c End integration limits
c Perform trapezoidal rule quadrature:

ang=ang1+0.5*dang
d=dc-r*sin(ang)
h=hc-r*cos(ang)
y1=yc
y2=yc+cL
dw=r*dang

c write(11,*) ' CYL quadrature with ang1,ang,dang,d,h,y1,y2,dw='
c write(11,*) ang1,ang,dang,d,h,y1,y2,dw

angs=0.5*pi-ang
dF=0.5*strip(d,h,y1,y2,angs,dw)

c write(11,*) ' CYL quadrature with ang1,ang2,dang,iq,dF1='
c write(11,*) ang1,ang2,dang,iq,dF

do 10 i=2,iq-1
ang=ang+dang
d=dc-r*sin(ang)
h=hc-r*cos(ang)
y1=yc
y2=yc+cL
dw=r*dang
angs=0.5*pi-ang
dFq=strip(d,h,y1,y2,angs,dw)

c write(11,*) ang,angs,dang,iq,dFq
dF=dFq+dF

10 continue
ang=ang2-0.5*dang
d=dc-r*sin(ang)
h=hc-r*cos(ang)
y1=yc
y2=yc+cL
dw=r*dang
angs=0.5*pi-ang
dF=dF+0.5*strip(d,h,y1,y2,angs,dw)
cyl=dF
dc=sdc*dc
return
end

c
function strip(d,h,y1,y2,alpha,dw)

c Let dA1 be on the x-axis, with normal in +z direction, and
calculate the viewfactor
c of a strip of width dw, with its normal at alpha radians ccw from
+x. The strip is
c parallel to the y-axis, and is at height h above the (x,y) plane;
x-displacement
c between dA1 and strip is d. Strip lies between y1 and y2
c********************************************************************
c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
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c********************************************************************
c********************************************************************

pi=4.*atan(1.)
tol=1.e-4
rtol=tol*sqrt(d**2 + h**2 + y1**2)

c Start with (0,y1) value:
strip=0.
sp=1.
if(abs(y1).gt.rtol) then
sp=sign(1.,y1)
p=sp*y1/sqrt(h**2 + d**2 )
strip=atan(p)+p/(1.+(p**2))
strip=strip*(d*cos(alpha)+h*sin(alpha))

& *(h/((sqrt(d**2+h**2))**3))
strip1=sp*strip*dw

c write(13,*) strip1,p,y1,d,h,alpha,dw
endif
if(abs(y2-y1).gt.rtol) then
p=y2/sqrt(h**2 + d**2 )
strip2=atan(p)+p/(1.+(p**2))
strip2=strip2*(d*cos(alpha)+h*sin(alpha))

& *(h/((sqrt(d**2+h**2))**3))
strip2=strip2*dw

c write(13,*) strip2,p,y2,d,h,alpha,dw
strip=strip2-(strip1)

else
strip=0.

endif
c write(13,*) y1,strip,strip1,strip2,y2

strip=strip/(2.*pi)
return
end

c
function cyl2(yc,zc,xf,r,cL,h1)

c Compute the viewfactor of a cylinder of length cL, radius r as
c seen from sample area dA1. Sample point is at z=h1, cylinder
c axis is at (yc,zc). Thus, dA1 is hc=h1-zc above and dc=yc to
c the right of the cylinder axis; the axis lies parallel to +x.
c Using the viewfactor of a strip of inclination alpha, width dw,
c to assemble the integrand for Trapezoidal Rule quadrature, we
c compute the viewfactor 'cyl2'. The cylinder face
c is distance 'xf' from the (y,z) plane.
c RESTRICTION: x2=xf+cL must be positive, nonzero. Argument xf
c is modified to conform with this rule, but returned intact.
c********************************************************************
c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c********************************************************************
c********************************************************************

pi=4.*atan(1.)
tol=1.e-4
hc=h1-zc
dc=yc
rtol=tol*sqrt(dc**2+hc**2+(xf+cL)**2)
xflag=0.
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if(xf.lt.0..and.(xf+cL).lt.rtol) then
xf=-(xf+cL)
xflag=1.

endif
sdc=sign(1.,dc)
dc=sdc*dc
if(dc.lt.rtol) then

c write(11,*) ' CYL2 sees dc,hc,xf,rtol=',dc,hc,xf,rtol,
c & ' dA1 is on-axis.'
c dA1 is on cylinder axis: check that it is outside cylinder:

if(hc.gt.r-rtol) then
c Closed form solution is:

sc=1.
cyl1=0.
if(abs(xf).gt.rtol) then

c Needs two evaluations:
sc=sign(1.,xf)
aL=sc*xf/r
aH=hc/r
aX=(1.+aH)**2+aL**2
aY=(1.-aH)**2+aL**2
cyl1=atan(sqrt((aH-1.)/(aH+1.)))
cyl2=atan(sqrt(aX*(aH-1.)/(aY*(aH+1.))))
cyl1=((aX-2.*aH)*cyl2/sqrt(aX*aY))-cyl1
cyl1= (atan(aL/sqrt(aH**2-1.))+aL*cyl1)/aH

endif
aL=(xf+cL)/r
aH=hc/r
aX=(1.+aH)**2+aL**2
aY=(1.-aH)**2+aL**2
cyl2=atan(sqrt((aH-1.)/(aH+1.)))
cyl3=atan(sqrt(aX*(aH-1.)/(aY*(aH+1.))))
cyl2=((aX-2.*aH)*cyl3/sqrt(aX*aY))-cyl2
cyl2= (atan(aL/sqrt(aH**2-1.))+aL*cyl2)/aH
cyl2=(cyl2-sc*cyl1)/pi

c Quadrature check on analytical value:
c Integration limits for on-axis dA1:
c if(r.gt.abs(h1-zc)) then
c cyl2=0.
c return
c else
c ang1=asin(r/(h1-zc))
c endif
c ang2=0.5*pi
c iq=26
c iq=max1(3,iq)
c End integration limits
c Perform trapezoidal rule quadrature:
c x1=xf
c x2=xf+cL
c cyl2=2.*cylq(iq,ang1,ang2,yc,zc,h1,r,x1,x2)
c cyl2=cyl2a-cyl2x
c write(11,*) cyl2,cyl2a,h1,x1,x2

else
c Inside (or on) cylinder:

cyl=0.
if(abs(hc-r).lt.rtol) cyl=1.
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endif
if(xflag.gt.0.1) then
xf=-(xf+cL)

endif
return

endif
c dA1 has definite offset from cylinder axis: quadrature required.
c dA1 Can be inside or on cylinder; check (dc**2+hc**2)>r**2:

dist=sqrt(dc**2 + hc**2)
if(abs(dist-r).lt.rtol) then

c On cylinder at angle atan(hc/dc):
cyl2=(atan(hc/dc))/pi
return

elseif(dist.lt.r-rtol) then
cyl2=0.
return

endif
c Compute limits of integration; 'ang' measured from -y going ccw:

rc=sqrt(dc**2+hc**2)
if(r.gt.rc) then
cyl2=0.
return

else
dphi=asin(r/rc)

endif
angc=atan(hc/dc)
ang1=angc-0.5*pi+dphi
ang2=angc+0.5*pi-dphi
if(hc.lt.r) then

c Horizon of dA1 intersects cylinder:
ang2=asin(hc/r)

endif
c Choose number of quadrature points (minimum allowed=3):

iq=51
iq=max1(3,iq)

c End integration limits
c Perform trapezoidal rule quadrature:

x1=xf
x2=xf+cL

c write(11,*) r,rc,angc,dphi,ang1,ang2
cyl2=cylq(iq,ang1,ang2,yc,zc,h1,r,x1,x2)
if(xflag.gt.0.1) then
xf=-(xf+cL)

endif
return
end

c
function strip2(d,h,x1,x2,alpha,dw)

c Let dA1 be on the z-axis at height h above the origin, with
c normal at angle 'alpha' ccw from the -z direction.
c Calculate the viewfactor of a strip of width dw, length
c (x2-x1), with its normal in +z direction. The strip is
c parallel to the x-direction, and is distance 'd' from it.
c********************************************************************
c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
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c***** Copyright (c) May 1999 Sandia National Laboratories *****
c********************************************************************
c********************************************************************

pi=4.*atan(1.)
tol=1.e-4
rtol=tol*sqrt(d**2 + h**2 + x1**2)

c Start with (0,x1) value:
strip=0.
r2sq=d**2+h**2
rsq1=r2sq+(x1)**2
rsq2=r2sq+(x2)**2
v2=1./sqrt(r2sq)
sf1=h*((x1/rsq1)+v2*atan(x1*v2))
sf2=h*((x2/rsq2)+v2*atan(x2*v2))
sf=(sf2-sf1)*dw/(2.*pi*r2sq)

c write(11,*) x1,x2,alpha,sf1,sf2
strip2=sf*(d*sin(alpha)+h*cos(alpha))

c strip2=sf*(-d*sin(alpha)+h*cos(alpha))
return
end

c
subroutine image(d,r,h,x,ang1,ang2,xcm,rcm,kimage)

c********************************************************************
c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c********************************************************************
c********************************************************************

dimension ang1(*),ang2(*),xcm(*),rcm(*)
c For a point at distance x beyond the midpoint between
c rollers of radius r, spacing d, with top of rollers at
c height h above the plane containing x, compute the angles
c ang1(k),ang2(k), k=1,2,...,kimage of the reflected image
c of the glass between the rollers (at height h).
c
c 0 < x < d/2 and 2r < d required
c
c Angles are measured ccw from horizontal at point x. The
c images are insides of cylinders of radius rcm(k), with
c centers at xcm(k), tangent to glass above.
c

pi=4.*atan(1.)
delta=d/r
k=1
dk=0.5*d+d*float(k-1)
dic=sqrt((h-r)**2+(dk-x)**2)
thic=atan((h-r)/(dk-x))
return
end

c
function cylq(iq,ang1,ang2,yc,zc,h1,r,x1,x2)

c Sets up Trapezoidal Rule quadrature of analytical view
c factor for a strip, in order to build up a cylindrical
c surface with axis parallel to +x, center at (yc,zc).
c Cylinder extends from x1 to x2.
c Sample point dA1 is on z-axis at h1 above the origin,
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c with normal in -z direction. It can view that portion
c of the cylinder between angles ang1<ang<ang2 where
c ang=0 is the horizontal -y direction from cylinder
c center. Quadrature evaluates strip function at 'iq'
c points, including endpoints at ang1,ang2.
c********************************************************************
c** Issued by Sandia National Laboratories, operated for the **
c** United States Department of Energy by Sandia Corporation. **
c** NOTICE **
c** This program was prepared in the course of work sponsored **
c** by an agency of the U.S.Government. Neither the United **
c** States Government nor any agency thereof, nor any of their**
c** employees, makes any warranty, express or implied, or **
c** assumes any legal liability or responsibility for the **
c** accuracy, completeness, or usefulness of any information, **
c** apparatus, product, or process disclosed, or represents **
c** that its use would not infringe privately owned rights. **
c** Reference herein to any specific commercial product, **
c** process, or service by trade name, trademark, manufacturer,*
c** or otherwise, does not necessarily constitute nor imply **
c** its endorsement, recommendation, or favoring by the United**
c** States Government, any agency thereof or any of their **
c** contractors or subcontractors. The views and opinions **
c** expressed herein do not necessarily state or reflect **
c** those of the United States Government, any agency thereof **
c** or any of their contractors or subcontractors. **
c** This code is supplied for official government use only. **
c** No further dissemination is permitted without specific **
c** permission from Sandia Laboratories, Livermore, CA 94551. **
c********************************************************************
c********************************************************************
c
c********************************************************************
c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c********************************************************************
c********************************************************************

pi=4.*atan(1.)
tol=1.e-5
iq=max1(4,iq)
dang=(ang2-ang1)/float(iq-1)

c Perform trapezoidal rule quadrature from ang1 to ang2:
ang=ang1
d=yc-r*sin(ang)
zt=zc*sin(ang)-yc*cos(ang)+r
h=h1*sin(ang)-zt
d=yc*sin(ang)-(h1-zc)*cos(ang)
rtol=tol*sqrt(h**2+d**2)
rot=ang-0.5*pi

c End new variables...
dw=r*dang
if(abs(d).gt.rtol) then
vwang=atan(abs(h/d))

else
vwang=0.5*pi
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endif
cc if(rot.le.-vwang.or.rot.ge.(0.5*pi+vwang)) then
cc dF=0.
cc else

dF=0.5*strip2(d,h,x1,x2,rot,dw)
cc endif
c write(11,*) ' CYLQ quadrature with ang1,rot,d,h,x1,x2,dw='
c write(11,*) ang1,rot,d,h,dF,vwang
c write(11,*) ' CYLQ quadrature with ang1,ang2,dang,iq,dF1='
c write(11,*) ang1,ang2,dang,iq,dF

do 10 i=2,iq-1
ang=ang+dang
d=yc-r*sin(ang)
zt=zc*sin(ang)-yc*cos(ang)+r
h=h1*sin(ang)-zt
d=yc*sin(ang)-(h1-zc)*cos(ang)
rot=ang-0.5*pi
if(abs(d).gt.rtol) then
vwang=atan(abs(h/d))

else
vwang=0.5*pi

endif
cc if(rot.gt.-vwang.and.rot.lt.(0.5*pi+vwang)) then

dFq=strip2(d,h,x1,x2,rot,dw)
cc endif
c write(11,*) ang,rot,d,h,dFq,vwang

dF=dFq+dF
10 continue

ang=ang2
d=yc-r*sin(ang)
zt=zc*sin(ang)-yc*cos(ang)+r
h=h1*sin(ang)-zt
d=yc*sin(ang)-(h1-zc)*cos(ang)
rot=ang-0.5*pi
if(abs(d).gt.rtol) then
vwang=atan(abs(h/d))

else
vwang=0.5*pi

endif
cc if(rot.gt.-vwang.and.rot.lt.(0.5*pi+vwang)) then

dF=dF+0.5*strip2(d,h,x1,x2,rot,dw)
cc endif
c write(11,*) ang,rot,d,h,dF,vwang

cylq=dF
return
end

program sum_vf_cyl
c********************************************************************
c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c********************************************************************
c********************************************************************

parameter(mk=101)
dimension Fkl(mk,mk),xfkl(mk),yfkl(mk)
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c Outputs heater assembly viewfactors of a sample point
c point (x1,y1,0) in the (x,y) plane with area dA1. Heater is
c array of cylindrical elements, each of which has viewfactors
c Fkl(k,l) on a grid of imax,jmax points with uniform spacing
c dx,dy. Array of elements has offset xoff,yoff from entry
c to section, spacing Lx in ribbon motion direction and Ly in
c the transverse direction. Each element is over the glass
c at height h. Input file 'Fkl.dat' contains single-element
c viewfactors; output file 'Fht.dat' contains summed viewfactors
c of all the elements at the xi,yj point corresponding to Fij.

open(unit=7,file='Fkl.dat',status='old')
open(unit=10,file='Fht.log',status='unknown')
open(unit=11,file='Fht.plt',status='unknown')
open(unit=12,file='chk.plt',status='unknown')
pi=4.*atan(1.)
read(7,*) imax,jmax,dx,dy,cL,r,hc

c Sample point dA1 is at (x1,y1) with origin on centerline
c of glass ribbon, at entry to the section of the lehr
c being heated. The ribbon moves along +x.
c Height hc above ribbon is already specified in 'Fkl.dat';
c new version of that file is required to change distance--
c rerun 'vwelem.dat'. This value is used in 'hvf()' to
c extrapolate viewfactor beyond the range covered in 'Fkl.dat'.

xoff=1.5
yoff=0.5
xL=2.0
yL=1.0

c Footprint rectangle (usually cooler boundary):
xf=36.
yf=3.5
nx=ifix((xf-xoff)/xL)
ny=ifix((yf-yoff)/yL)

cc imax=imax-1
write(6,*) ' SUM has imax,jmax,nx,ny=',imax,jmax,nx,ny
do 10 j=1,jmax

yfkl(j)=dy*float(j-1)
10 continue

do 20 i=1,imax
read(7,101) (Fkl(i,j),j=1,jmax)
xfkl(i)=dx*float(i-1)

c write(12,*) xfkl(i),Fkl(i,1)
20 continue

c Echo first row of array just read:
c i1=1
c write(6,101) (Fkl(i1,j),j=1,jmax)
c Plot file for element positions:

xe=0.
ye=0.001
do 25 i=1,nx
write(12,*) xe,yo
xe=xoff+xL*float(i-1)
write(12,*) xe,yo
write(12,*) xe,ye
xe=xoff+xL*float(i-1)+cL
write(12,*) xe,ye

25 continue
wy=0.
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x=2.
y=3.
call ptdst(cL,wy,x,y,xoff,yoff,xL,yL,nx,ny,xr,yr,n1,n2)
write(6,*) 'Position (x,y)=(',x,',',y,'); n1,n2=',n1,n2

c
c Sample points (xs,ys) at which viewfactor is computed and
c written into 'Fht.plt'

dxs=2./12.
dys=2./12.
xs=-4.
ys=0.5
isam=91
jsam=1
do 60 kjs=1,jsam
y=ys+dys*float(kjs-1)

c write(6,*) ' Sampling points in column kjs=',kjs,
c & '; y=',y

do 50 ks=1,isam
x=xs+dxs*float(ks-1)

c write(6,*) ' Sampling x=',x
c For this position, sum the elements' contributions to
c viewfactor:

Fxy=0.
do 40 j=1,ny
ye=abs(y-yoff-yL*float(j-1)-0.5*wy)

c write(6,*) ' Summing elements with ye=',ye
do 30 i=1,nx
xe=abs(x-xoff-xL*float(i-1)-0.5*cL)
call hvf(mk,imax,jmax,hc,xfkl,yfkl,Fkl,xe,ye,Fe)

c write(6,*) ' Summing element xe=',xe,' with Fe=',Fe
Fxy=Fxy+Fe

30 continue
40 continue

xout=x-xoff-0.5*cL
write(11,*) x,Fxy,xout,xe,ye

50 continue
60 continue

close(7)
close(10)
close(11)

101 format(31e13.4)
stop
end

c
subroutine ptdst(cL,wy,x,y,xoff,yoff,xL,yL,nx,ny,xr,yr,n1,n2)

c********************************************************************
c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c********************************************************************
c********************************************************************
c Given position (x,y) in array of elements with spacing
c xL and yL along x,y respectively, find number of
c columns nx and number of rows ny of elements. Each
c element begins at xoff, xoff+xL,..., and is cL long.
c Transverse start at yoff, then yoff+yL,... wy wide.
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c Return the indices (n1,n2) of the element nearest
c point (x,y), and the distance (xr,yr) to that
c element's centroid.
c
c Ficticious y-width for generality:
c wy=0.

i1=ifix((x-xoff)/xL)
j1=ifix((y-yoff)/yL)
i1=amin1(nx,amax1(i1,0))
j1=amin1(ny,amax1(j1,0))

c write(6,*) ' x,y,i1,j1=',x,y,i1,j1
call near(i1,nx,x,xL,cL,xoff,n1,xr)
call near(j1,ny,y,yL,wy,yoff,n2,yr)

c write(6,*) ' xr,yr,n1,n2=',xr,yr,n1,n2
return
end

c
subroutine near(i1,nx,x,xL,cL,xoff,n1,xr)

c********************************************************************
c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c********************************************************************
c********************************************************************
c These index i1 is the element to the left of
c point x. Now determine if this is the nearest
c element.

n1=i1
x1=xoff+xL*float(i1)+0.5*cL
if(i1.eq.0) then
if((x-xoff).gt.0.) then

c Point x is within first row:
xr=x-x1

else
c Point (x,y) is to left of xoff; first row is nearest:

xr=x1-x
endif

elseif(i1.eq.nx) then
c Point (x,y) is to right of whole array; nx row nearest:

xr=x-x1+cL
else

c Point (x,y) is inside array; check row i1+1 distance:
xr1=x-x1
xr2=x1+xL-x
if(xr2.lt.xr1) then
n1=n1+1
xr=xr2

else
xr=xr1

endif
endif
return
end

c
subroutine hvf(mk,imax,jmax,hc,xfkl,yfkl,Fkl,xe,ye,fe)

c********************************************************************
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c********************************************************************
c***** Written May 1999 for OIT/Glass/Sensors and Controls *****
c***** by Lee A. Bertram *****
c***** Copyright (c) May 1999 Sandia National Laboratories *****
c********************************************************************
c********************************************************************

dimension Fkl(mk,*),xfkl(*),yfkl(*)
c Positive quadrant is covered by (xfkl,yfkl) mesh,
c starting at (0,0). These values are interpolated
c to (xe,ye) inside the mesh, but extrapolated by
c a 1/dist decay function outside the mesh.

ie=imax
tol=1.e-5
do 10 i=1,imax
if(xfkl(i)+tol.lt.xe) then
go to 10

else
ie=max1(1,i-1)
go to 15

endif
10 continue

ie=imax
15 continue

do 20 j=1,jmax
if(yfkl(j)+tol.lt.ye) then
go to 20

else
je=max1(1,j-1)
go to 25

endif
20 continue

je=jmax
25 continue

c Indices (ie,je) are to L and below (xe,ye) point.
if(ie.eq.imax) then

c xe is outside mesh (xfkl,yfkl)
if(je.eq.jmax) then

c Point (xe,ye) is to UR of mesh:
rmesh=sqrt(hc**2+xfkl(imax)**2 + yfkl(jmax)**2)
re=sqrt(hc**2+xe**2 + ye**2)
fe=Fkl(imax,jmax)*((rmesh/re)**3)
return

elseif(je.ge.2) then
c Point is to R of mesh but within y-range:

fR=fkl(imax,je)+(fkl(imax,je+1)-fkl(imax,je))*
& (ye-yfkl(je))/(yfkl(je+1)-yfkl(je))

rmesh=sqrt(hc**2+xfkl(imax)**2 + ye**2)
re=sqrt(hc**2+xe**2 + ye**2)
fe=FR*((rmesh/re)**3)
return

else
c Point is to R of and below mesh:

rmesh=sqrt(hc**2+xfkl(imax)**2 + yfkl(1)**2)
re=sqrt(hc**2+xe**2 + ye**2)
fe=Fkl(imax,1)*((rmesh/re)**3)
return

endif
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endif
if(je.eq.jmax) then

c ye is outside mesh (xfkl,yfkl)
if(ie.ge.2) then

c Point is above mesh but within x-range:
fR=fkl(ie,jmax)+(fkl(ie+1,jmax)-fkl(ie,jmax))*

& (xe-xfkl(ie))/(xfkl(ie+1)-xfkl(ie))
rmesh=sqrt(hc**2+yfkl(jmax)**2 + xe**2)
re=sqrt(hc**2+xe**2 + ye**2)
fe=FR*((rmesh/re)**3)
return

endif
endif
f1=Fkl(ie,je)
f2=Fkl(ie+1,je)
f3=Fkl(ie+1,je+1)
f4=Fkl(ie,je+1)
x1=xfkl(ie)
x2=xfkl(ie+1)
y1=yfkl(je)
y2=yfkl(je+1)
xfrac=(xe-x1)/(x2-x1)
yfrac=(ye-y1)/(y2-y1)

c write(12,*) ' Interpolating with x1,x2,y1,y2=',
c & x1,x2,y1,y2,' and ie,je=',ie,je
c write(12,*) ' Corner values f1,f2,f3,f4=',
c & f1,f2,f3,f4,' with xfrac,yfrac=',
c & xfrac,yfrac

fe1=(f1+(f2-f1)*xfrac)
fe2=(f4+(f3-f4)*xfrac)
fe=(fe1+(fe2-fe1)*yfrac)
return
end

c
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APPENDIX D.  Inputs to Define Lehr Geometry and Operating Conditions

INPUT FILES FOR ENCLOSURE

GEOM.DAT

FL1 Lehr Geometry: Enclosures by section.
Section L(ft) W (ft) H (ft; to tubes) D (ft; to tubes)

Name/Function
1 100. 20. 2.5 2.5 A Conditioning
2 150. 20. 2.5 2.5 B Anneal
3 150. 20. 2.5 2.5 C1 1st Cooldown
4 150. 20. 2.5 2.5 C2 2nd Cooldown
5 50. 20. 10. 2.5 -- Air Chill

End Section Definitions
6 Section A Coolers: From CL to N wall
Index x gap(ft) y gap(in) height(ft) L W Comment
1 2.00 0.75 2.50 96.00 2.75 TC3 sensor
2 2.00 1.50 2.50 96.00 3.00 TC4 sensor
3 2.00 1.50 2.50 96.00 3.00 TC5 sensor
4 2.00 0.75 -2.50 96.00 2.75 TC13 sensor*
5 2.00 1.50 -2.50 96.00 3.00 TC14 sensor*
6 2.00 1.50 -2.50 96.00 3.00 TC15 sensor*

6 Section A Heaters From CL to N wall
Index nx ny xinit xspace yinit yspace Le(in) De(in) Ht(ft) kW

Comment
1 48 5 1.00 2.00 0.00 0.50 4.00 0.50 2.00 1.00

4A3
2 48 5 1.00 2.00 2.00 0.50 4.00 0.50 2.00 1.00

4A4
3 48 5 1.00 2.00 4.00 0.50 4.00 0.50 2.00 1.00

4A5
4 48 5 1.00 2.00 0.00 0.50 4.00 0.50 -2.00 1.00

4A13
5 48 5 1.00 2.00 2.00 0.50 4.00 0.50 -2.00 1.00

4A14
6 48 5 1.00 2.00 4.00 0.50 4.00 0.50 -2.00 1.00

4A15
2 Section A Rollers

Material Dia(in) Space (C-C, in) L (in) no. Drive Group Comments
1 12.00 24.00 180.00 10 1 Stainless; inside

lehr
2 12.00 36.00 180.00 26 2 Xyolite; inside lehr

OPNL.DAT

ribbon width (in) pull rate (ton/day)
0.1600e+03 0.5500e+03

Conditioner center line T, edge dT (deg F) [SETPOINT]
0.1070e+04 0.2000e+02

Incoming center line T, edge dT (deg F) [IR Strip Sensor]
0.1120e+04 -0.4000e+02
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Anneal rate R (deg C / sec )
0.3000e+01

Peak stresses in C1/C2 (psi)
min max Anneal stresses

0.5000e+02 0.2000e+03
transverse axial Membrane stresses (split/tear)

  0.12500e+04 0.1500e+04
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APPENDIX E.  Thermophysical and Constitutive Properties for Glass

1 27 Thermophysical properties for glass ktype; nlines of data
0.2400e+01 density, room temperature (gm/cc)
0.1030e+01 specific heat, room temperature (J/gm-K)
0.1030e+01 specific heat, anneal temperature (J/gm-K)
0.3000e-01 thermal conductivity, room temperature (W/cm-K)
0.4000e-01 thermal conductivity, anneal temperature (W/cm-K)
0.5750e+03 Anneal temperature (1070 deg F) (deg C)
0.5100e+03 Glass temperature (950 deg F) (deg C)
0.5200e+03 Fictive residual temperature , Tfr (deg C)
0.1000e-07 Glass linear coefficient of thermal expansion, (1/deg C)
0.3000e-07 Liquid linear coefficient of thermal expansion, (1/deg C)
0.8000e+00 Emissivity at glass temperature, 5 micron IR (1)
0.2511e+03 Fulcher To (deg C)
0.1000e+05 Fulcher b (deg C)

-0.6120e+01 Fulcher a (1)
0.1000e+08 Young's modulus, E(0), room T (psi)
0.1000e+08 Young's modulus, E(0), glass T (psi)
0.2500e+00 Poisson's ratio, nu, room T (1)
0.4675e+05 GN structural relax activation energy Hs (cal/mole)
0.7560e+03 GN structural relax time,tf (sec)
0.1300e+01 GN structural relax exponent, bf (1)
0.9350e+05 GN viscous relax activation energy Hv (cal/mole)
0.1410e+03 GN viscous relax time,tvisc (sec)
0.1300e+01 GN viscous relax exponent, bv (1)
0.5380e+03 viscosity base temperature,TB (deg C)
0.3000e+13 base viscosity at TB: visc,B (Pa-sec)
0.2600e+03 radiation/conduction parity temperature (deg C)
0.2700e+01 upper wavelength bound for transparency (4.5?) (micron)

Notes: Anneal is presumed to start at Narayanaswamy's TU and end at
his TL, given by

TU = Ta + dTa
TL = Ts + dTa

where
dTa = 8.86 ln Ravg + 65 (1 - Ravg)

in terms of average cooling rate Ravg (deg C/sec).

Fulcher refers to viscosity-temperature relation

visc(T) = exp { a + b / (T - To) }

The given coefficients do not give visc=10**(12.5) Pa-sec at
Ta, nor is visc=10**(13.5) at Ts, as in classical definitions.

GN is Gardon-Narayanaswamy viscoelastic formulation

bf
M (ksi) = exp{-(ksi/tf) }

where

ksi = reduced time = int(0,t) [ phi(T,Tf) dt' ] , in terms of

phi = visc,B/visc(T)
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with

ln(phi) = [ Hg(1/TB-1/T)+Hs(1/TB-1/Tf)]/Rg

in which

Tf = T + int(0,t) [ M(ksi-ksi') (dT/dksi') d ksi' ].

Then stress is given by

E(0) d (e-eth)
sigma= ------ int(0,t) [ R(ksi') ------ d ksi' ]

(1-nu) d ksi'

eth = aT,L (T- Ta) - rx, where

rx=(aT,L-aT,g) int(0,t) [ M(ksi-ksi') (dT/dksi') d ksi' ]

with aT,L = liquid linear coefficient of thermal expansion
and aT,g = glass linear coefficient of thermal expansion;
and the stress relaxation function R for a slab is:

bv
R(ksi) = exp{-[ ksi/tvisc] } .

Notation

"int(0,t) [ ]" denotes "integral from 0 to t, of integrand [ ]"
GN use of VZN seems to have been supplanted by Rekhson/Mazurin
terms for viscosity, M and R in Narayanaswamy 1981. This also
used consistent phi = visc,B/visc relationship.

VZN is Van Zee & Noritake viscoelastic formulation

M (ksi) = c1 exp{-ksi/tfast} + (1-c1) exp {-ksi/tslow}, with

ksi = reduced time = int(0,t) [ phi(T,Tf) dt' ] , in terms of

phi = exp { c2 (T - Tref) }
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